論文の概要: Multi-Frequency Federated Learning for Human Activity Recognition Using Head-Worn Sensors
- arxiv url: http://arxiv.org/abs/2512.03287v1
- Date: Tue, 02 Dec 2025 22:52:58 GMT
- ステータス: 情報取得中
- システム内更新日: 2025-12-04 11:57:23.429179
- Title: Multi-Frequency Federated Learning for Human Activity Recognition Using Head-Worn Sensors
- Title(参考訳): 頭部センサを用いた多周波数フェデレーション学習による人間の活動認識
- Authors: Dario Fenoglio, Mohan Li, Davide Casnici, Matias Laporte, Shkurta Gashi, Silvia Santini, Martin Gjoreski, Marc Langheinrich,
- Abstract要約: 本研究は、プライバシを意識したMLを実現するために、多周波フェデレートラーニング(FL)を提案する。
私たちはヘッドウーンデバイス(イヤホンやスマートグラスなど)に注力していますが、従来のスマートウォッチやスマートフォンベースのHARと比較して、探索されていない領域です。
その結果、周波数固有のアプローチに対する2つのデータセットの改善が示された。
- 参考スコア(独自算出の注目度): 13.34990751054306
- License:
- Abstract: Human Activity Recognition (HAR) benefits various application domains, including health and elderly care. Traditional HAR involves constructing pipelines reliant on centralized user data, which can pose privacy concerns as they necessitate the uploading of user data to a centralized server. This work proposes multi-frequency Federated Learning (FL) to enable: (1) privacy-aware ML; (2) joint ML model learning across devices with varying sampling frequency. We focus on head-worn devices (e.g., earbuds and smart glasses), a relatively unexplored domain compared to traditional smartwatch- or smartphone-based HAR. Results have shown improvements on two datasets against frequency-specific approaches, indicating a promising future in the multi-frequency FL-HAR task. The proposed network's implementation is publicly available for further research and development.
- Abstract(参考訳): HAR(Human Activity Recognition)は、医療や高齢者医療など、さまざまな応用分野の恩恵を受ける。
従来のHARでは、中央集中型のユーザデータに依存するパイプラインを構築し、集中型のサーバにユーザデータをアップロードする必要があるため、プライバシ上の懸念を生じさせる可能性がある。
本研究は,(1)プライバシを意識したML,(2)サンプリング頻度の異なるデバイス間での合同MLモデル学習を実現するために,多周波フェデレートラーニング(FL)を提案する。
私たちはヘッドウーンデバイス(イヤホンやスマートグラスなど)に注力しています。
その結果、周波数固有のアプローチに対する2つのデータセットの改善が示され、多周波FL-HARタスクの有望な未来が示唆された。
提案するネットワークの実装は、さらなる研究と開発のために公開されている。
関連論文リスト
- Federated Learning for 6G: Paradigms, Taxonomy, Recent Advances and
Insights [52.024964564408]
本稿では,プロトコルスタックのすべてのレベルにわたってフェデレートラーニングを実装することの付加価値について検討する。
それは重要なFLアプリケーションを示し、ホットトピックに対処し、将来の研究と開発のための貴重な洞察と明示的なガイダンスを提供します。
我々の結論は、FLと将来の6Gの相乗効果を活用しつつ、FLがワイヤレス産業に革命をもたらす可能性を浮き彫りにすることを目的としています。
論文 参考訳(メタデータ) (2023-12-07T20:39:57Z) - FedOpenHAR: Federated Multi-Task Transfer Learning for Sensor-Based
Human Activity Recognition [0.0]
本稿では,センサを用いた人間行動認識とデバイス位置識別の両課題に対して,フェデレート・トランスファー・ラーニングをマルチタスク方式で検討する。
OpenHARフレームワークは10個の小さなデータセットを含むモデルをトレーニングするために使用される。
タスク固有でパーソナライズされたフェデレーションモデルを用いたトランスファーラーニングとトレーニングにより、各クライアントを個別に訓練し、完全集中型アプローチよりも高い精度で学習した。
論文 参考訳(メタデータ) (2023-11-13T21:31:07Z) - A Wireless-Vision Dataset for Privacy Preserving Human Activity
Recognition [53.41825941088989]
アクティビティ認識の堅牢性を改善するため,WiNN(WiFi-based and video-based neural network)が提案されている。
以上の結果から,WiViデータセットは一次需要を満足し,パイプライン内の3つのブランチはすべて,80%以上のアクティビティ認識精度を維持していることがわかった。
論文 参考訳(メタデータ) (2022-05-24T10:49:11Z) - UMSNet: An Universal Multi-sensor Network for Human Activity Recognition [10.952666953066542]
本稿では,人間行動認識のためのユニバーサルマルチセンサネットワーク(UMSNet)を提案する。
特に,新しい軽量センサ残差ブロック(LSRブロック)を提案する。
我々のフレームワークは明確な構造を持ち、様々な種類のマルチモーダル時系列分類タスクに直接適用することができる。
論文 参考訳(メタデータ) (2022-05-24T03:29:54Z) - A Prospective Approach for Human-to-Human Interaction Recognition from
Wi-Fi Channel Data using Attention Bidirectional Gated Recurrent Neural
Network with GUI Application Implementation [0.0]
本研究は、WiFiルータとIntel 5300 NIC間の多重入力多重出力無線リンクと、時系列Wi-Fiチャネル状態情報を用いて、人対人同時通信認識を行う。
提案した自己注意誘導双方向Gated Recurrent Neural Networkは、13の相互相互作用を1つの主題ペアに対して最大94%のベンチマーク精度で分類することができる。
論文 参考訳(メタデータ) (2022-02-16T15:40:52Z) - Self-Supervised WiFi-Based Activity Recognition [3.4473723375416188]
屋内環境における受動的活動認識のためのWi-Fiデバイスから微細な物理層情報を抽出する。
自己監督型コントラスト学習による活動認識性能の向上を提案する。
WiFiによる活動認識のタスクにおいて,マクロ平均F1スコアの17.7%の増加が観察された。
論文 参考訳(メタデータ) (2021-04-19T06:40:21Z) - Federated Learning-based Active Authentication on Mobile Devices [98.23904302910022]
モバイルデバイス上のユーザアクティブ認証は、デバイスセンサ情報に基づいて登録ユーザを正しく認識できるモデルを学ぶことを目的としている。
Federated Active Authentication (FAA) と呼ばれる新しいユーザーアクティブ認証トレーニングを提案します。
既存のFL/SL法は,同質に分散するデータに依存するため,FAAにとって最適ではないことを示す。
論文 参考訳(メタデータ) (2021-04-14T22:59:08Z) - Federated Learning: A Signal Processing Perspective [144.63726413692876]
フェデレーションラーニングは、データを明示的に交換することなく、ローカルデータセットを保持する複数のエッジデバイスでモデルをトレーニングするための新しい機械学習パラダイムです。
本稿では、信号処理ツールを用いて扱うのが自然である主な課題をカプセル化し、強調する、連合学習のための統一的な体系的フレームワークを提供する。
論文 参考訳(メタデータ) (2021-03-31T15:14:39Z) - Moving Object Classification with a Sub-6 GHz Massive MIMO Array using
Real Data [64.48836187884325]
無線信号を用いた屋内環境における各種活動の分類は,様々な応用の新たな技術である。
本論文では,屋内環境におけるマルチインプット・マルチアウトプット(MIMO)システムから,機械学習を用いて移動物体の分類を解析する。
論文 参考訳(メタデータ) (2021-02-09T15:48:35Z) - Invariant Feature Learning for Sensor-based Human Activity Recognition [11.334750079923428]
被験者やデバイス間で共有される共通情報を抽出する不変特徴学習フレームワーク(IFLF)を提案する。
実験により、IFLFは、一般的なオープンデータセットと社内データセットをまたいだ主題とデバイスディバージョンの両方を扱うのに効果的であることが示された。
論文 参考訳(メタデータ) (2020-12-14T21:56:17Z) - Wireless for Machine Learning [91.13476340719087]
我々は、分散データセット上で機械学習サービスをサポートするように設計された最先端のワイヤレス手法について、徹底的にレビューする。
文献にはアナログ・オーバー・ザ・エア計算とMLに最適化されたデジタル無線リソース管理という2つの明確なテーマがある。
このサーベイは、これらのメソッドを包括的に紹介し、最も重要な研究をレビューし、オープンな問題を強調し、アプリケーションのシナリオについて議論する。
論文 参考訳(メタデータ) (2020-08-31T11:09:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。