論文の概要: LLM as Explainable Re-Ranker for Recommendation System
- arxiv url: http://arxiv.org/abs/2512.03439v1
- Date: Wed, 03 Dec 2025 04:42:58 GMT
- ステータス: 情報取得中
- システム内更新日: 2025-12-04 12:11:27.206123
- Title: LLM as Explainable Re-Ranker for Recommendation System
- Title(参考訳): リコメンデーションシステムにおける説明可能なリランカーとしてのLCM
- Authors: Yaqi Wang, Haojia Sun, Shuting Zhang,
- Abstract要約: 従来のレコメンデーションシステムは説明可能性に欠けることが多く、人気バイアスのような問題に悩まされる。
本稿では,大規模言語モデル(LLM)を説明可能なリランカとして使用し,精度と解釈性の両方を向上させることを提案する。
- 参考スコア(独自算出の注目度): 3.0720618129954875
- License:
- Abstract: The application of large language models (LLMs) in recommendation systems has recently gained traction. Traditional recommendation systems often lack explainability and suffer from issues such as popularity bias. Previous research has also indicated that LLMs, when used as standalone predictors, fail to achieve accuracy comparable to traditional models. To address these challenges, we propose to use LLM as an explainable re-ranker, a hybrid approach that combines traditional recommendation models with LLMs to enhance both accuracy and interpretability. We constructed a dataset to train the re-ranker LLM and evaluated the alignment between the generated dataset and human expectations. Leveraging a two-stage training process, our model significantly improved NDCG, a key ranking metric. Moreover, the re-ranker outperformed a zero-shot baseline in ranking accuracy and interpretability. These results highlight the potential of integrating traditional recommendation models with LLMs to address limitations in existing systems and pave the way for more explainable and fair recommendation frameworks.
- Abstract(参考訳): 大規模言語モデル (LLMs) のレコメンデーションシステムへの応用が最近注目を集めている。
従来のレコメンデーションシステムは説明可能性に欠けることが多く、人気バイアスのような問題に悩まされる。
以前の研究では、LCMがスタンドアロンの予測器として使われると、従来のモデルに匹敵する精度を達成できないことが示されている。
これらの課題に対処するために、従来のレコメンデーションモデルとLLMを組み合わせたハイブリッドアプローチである、説明可能なリランカとしてLLMを使用することを提案する。
我々は、再ランカLLMをトレーニングするためのデータセットを構築し、生成されたデータセットと人間の期待との整合性を評価した。
2段階のトレーニングプロセスを活用することで,主要なランキング指標であるNDCGを大幅に改善した。
さらに、リランカは、ランク精度と解釈可能性においてゼロショットベースラインを上回った。
これらの結果は、従来のレコメンデーションモデルとLLMを統合することで、既存のシステムの制限に対処し、より説明しやすい公正なレコメンデーションフレームワークを実現する可能性を強調している。
関連論文リスト
- Evaluating Position Bias in Large Language Model Recommendations [3.430780143519032]
大規模言語モデル(LLM)は、リコメンデーションタスクのための汎用ツールとして、ますます研究されている。
LLMをベースとした推薦モデルは位置バイアスに悩まされ、その場合、プロンプト内の候補項目の順序がLLMの推薦に不均等に影響を及ぼす可能性がある。
本稿では,LLMレコメンデーションモデルにおける位置バイアスを軽減するための新たなプロンプト戦略であるRightingをIterative Selection経由で導入する。
論文 参考訳(メタデータ) (2025-08-04T03:30:26Z) - What LLMs Miss in Recommendations: Bridging the Gap with Retrieval-Augmented Collaborative Signals [4.297070083645049]
ユーザとイテムのインタラクションには、多くの成功したレコメンデーションシステムのバックボーンを形成する、リッチなコラボレーティブなシグナルが含まれている。
大規模言語モデル(LLM)がこの種類の協調的な情報を効果的に説明できるかどうかは不明だ。
構造化された相互作用データにそれらの予測を基礎づけることによりLLMを強化する単純な検索拡張生成(RAG)手法を提案する。
論文 参考訳(メタデータ) (2025-05-27T05:18:57Z) - Direct Preference Optimization for LLM-Enhanced Recommendation Systems [33.54698201942643]
大規模言語モデル(LLM)は、幅広い領域で顕著なパフォーマンスを示している。
我々は,DPOをLLM強化レコメンデーションシステムに統合するフレームワークであるDPO4Recを提案する。
大規模な実験により、DPO4Recは強いベースラインよりも性能が大幅に向上した。
論文 参考訳(メタデータ) (2024-10-08T11:42:37Z) - LLMEmb: Large Language Model Can Be a Good Embedding Generator for Sequential Recommendation [57.49045064294086]
大きな言語モデル(LLM)は、その人気とは無関係に、アイテム間の意味的関係をキャプチャする能力を持つ。
LLMEmb(LLMEmb)は、LCMを利用してアイテム埋め込みを生成し、逐次レコメンダシステム(SRS)の性能を向上させる手法である。
論文 参考訳(メタデータ) (2024-09-30T03:59:06Z) - Improve Temporal Awareness of LLMs for Sequential Recommendation [61.723928508200196]
大規模言語モデル(LLM)は、幅広い汎用タスクを解く際、印象的なゼロショット能力を示した。
LLMは時間的情報の認識と利用に不足しており、シーケンシャルなデータの理解を必要とするタスクではパフォーマンスが悪い。
LLMに基づくシーケンシャルレコメンデーションのために、歴史的相互作用の中で時間情報を利用する3つのプロンプト戦略を提案する。
論文 参考訳(メタデータ) (2024-05-05T00:21:26Z) - LLMRec: Benchmarking Large Language Models on Recommendation Task [54.48899723591296]
推奨領域におけるLarge Language Models (LLMs) の適用について, 十分に検討されていない。
我々は、評価予測、シーケンシャルレコメンデーション、直接レコメンデーション、説明生成、レビュー要約を含む5つのレコメンデーションタスクにおいて、市販のLLMをベンチマークする。
ベンチマークの結果,LLMは逐次的・直接的推薦といった精度に基づくタスクにおいて適度な熟練度しか示さないことがわかった。
論文 参考訳(メタデータ) (2023-08-23T16:32:54Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
大型言語モデル (LLM) は、一般的な要約データセットにおける元の参照要約よりも人間のアノテーションに好まれる。
より小さなテキスト要約モデルに対するLLM-as-reference学習設定について検討し,その性能が大幅に向上するかどうかを検討する。
論文 参考訳(メタデータ) (2023-05-23T16:56:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。