論文の概要: Tada-DIP: Input-adaptive Deep Image Prior for One-shot 3D Image Reconstruction
- arxiv url: http://arxiv.org/abs/2512.03962v1
- Date: Wed, 03 Dec 2025 16:56:38 GMT
- ステータス: 情報取得中
- システム内更新日: 2025-12-04 11:56:18.844724
- Title: Tada-DIP: Input-adaptive Deep Image Prior for One-shot 3D Image Reconstruction
- Title(参考訳): 多田DIP : ワンショット3D画像再構成に先立つ入力適応型深部画像
- Authors: Evan Bell, Shijun Liang, Ismail Alkhouri, Saiprasad Ravishankar,
- Abstract要約: そこで我々は,3次元逆問題の解法として,高効率で完全な3次元DIP手法であるDada-DIPを紹介した。
入力適応と正規化を組み合わせ,高品質な3D再構成を実現する。
スパースビューX線CT再構成実験により,提案手法の有効性が検証された。
- 参考スコア(独自算出の注目度): 14.275526906868622
- License:
- Abstract: Deep Image Prior (DIP) has recently emerged as a promising one-shot neural-network based image reconstruction method. However, DIP has seen limited application to 3D image reconstruction problems. In this work, we introduce Tada-DIP, a highly effective and fully 3D DIP method for solving 3D inverse problems. By combining input-adaptation and denoising regularization, Tada-DIP produces high-quality 3D reconstructions while avoiding the overfitting phenomenon that is common in DIP. Experiments on sparse-view X-ray computed tomography reconstruction validate the effectiveness of the proposed method, demonstrating that Tada-DIP produces much better reconstructions than training-data-free baselines and achieves reconstruction performance on par with a supervised network trained using a large dataset with fully-sampled volumes.
- Abstract(参考訳): Deep Image Prior (DIP)は、最近、有望なワンショットニューラルネットワークベースの画像再構成法として登場した。
しかし、DIPは3次元画像再構成問題に限られている。
本研究では,高効率で完全な3次元DIP手法であるDada-DIPを紹介する。
入力適応と正規化を組み合わせ,DIPに共通するオーバーフィッティング現象を回避しつつ高品質な3D再構成を実現する。
スパースビューX線CT再構成実験により, 提案手法の有効性を検証し, トレーニングデータのないベースラインよりも多田DIPの方がはるかに優れた再構成を実現し, 完全サンプリングボリュームの大規模データセットを用いてトレーニングした教師ネットワークと同等の再構成性能を実現することを示した。
関連論文リスト
- HORT: Monocular Hand-held Objects Reconstruction with Transformers [61.36376511119355]
モノクロ画像から手持ちの物体を3Dで再構成することは、コンピュータビジョンにおいて重要な課題である。
ハンドヘルドオブジェクトの高密度な3次元点群を効率的に再構成するトランスフォーマーモデルを提案する。
提案手法は,高速な推測速度で最先端の精度を達成し,画像の幅を最適化する。
論文 参考訳(メタデータ) (2025-03-27T09:45:09Z) - Difix3D+: Improving 3D Reconstructions with Single-Step Diffusion Models [65.90387371072413]
本稿では,3次元再構成と新規ビュー合成を向上する新しいパイプラインであるDifix3D+を紹介する。
このアプローチのコアとなるのは、レンダリングされた新規ビューにおけるアーティファクトの強化と削除のためにトレーニングされた、単一ステップのイメージ拡散モデルであるDifixです。
論文 参考訳(メタデータ) (2025-03-03T17:58:33Z) - Swap-Net: A Memory-Efficient 2.5D Network for Sparse-View 3D Cone Beam CT Reconstruction [13.891441371598546]
プロジェクションの限られたセットから3次元コーンビーム計算トモグラフィ(CBCT)画像の再構成は、多くの画像応用において逆問題である。
本稿では,スパースビュー3次元CBCT画像再構成のためのメモリ効率2.5DネットワークであるSwap-Netを提案する。
論文 参考訳(メタデータ) (2024-09-29T08:36:34Z) - StoDIP: Efficient 3D MRF image reconstruction with deep image priors and stochastic iterations [3.4453266252081645]
StoDIPは, 3次元MRFイメージングに基いて, 地上構造のないDeep Image Prior (DIP) 再構成を拡張した新しいアルゴリズムである。
健康なボランティアの脳全体をスキャンしたデータセットで、StoDIPは、質的にも質的にも、地道な再建ベースラインよりも優れたパフォーマンスを示した。
論文 参考訳(メタデータ) (2024-08-05T10:32:06Z) - Deep Diffusion Image Prior for Efficient OOD Adaptation in 3D Inverse Problems [61.85478918618346]
本稿では,従来のディープイメージに形式的な接続を導入することで,最近のSCD適応法を一般化するDDIPを提案する。
本稿では,D3IPと呼ばれる3次元計測のための効率的な適応手法を提案し,DDIPを桁違いに高速化する。
本手法は, 学習対象とは大きく異なるファントム画像のみを用いて, 事前学習した生成的画像から多種多様な3次元再構成タスクを解くことができることを示す。
論文 参考訳(メタデータ) (2024-07-15T12:00:46Z) - FineRecon: Depth-aware Feed-forward Network for Detailed 3D
Reconstruction [13.157400338544177]
ポーズ画像からの3次元再構成に関する最近の研究は、深層ニューラルネットワークを用いてシーンレベルの3次元幾何を直接推定できることを実証している。
推論に基づく3次元再構成の忠実度を改善するための有効な3つの方法を提案する。
提案手法はスムーズかつ高精度な再構成を行い,多深度および3次元再構成の指標において顕著な改善が見られた。
論文 参考訳(メタデータ) (2023-04-04T02:50:29Z) - Geometry-Aware Attenuation Learning for Sparse-View CBCT Reconstruction [53.93674177236367]
Cone Beam Computed Tomography (CBCT) は臨床画像撮影において重要な役割を担っている。
従来の方法では、高品質な3D CBCT画像の再構成には数百の2次元X線投影が必要である。
これにより、放射線線量を減らすため、スパースビューCBCT再構成への関心が高まっている。
本稿では,この問題を解決するために,新しい幾何対応エンコーダデコーダフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-26T14:38:42Z) - NeRF-GAN Distillation for Efficient 3D-Aware Generation with
Convolutions [97.27105725738016]
GAN(Generative Adversarial Networks)のようなニューラルラジアンスフィールド(NeRF)と生成モデルの統合は、単一ビュー画像から3D認識生成を変換した。
提案手法は,ポーズ条件付き畳み込みネットワークにおいて,事前学習したNeRF-GANの有界遅延空間を再利用し,基礎となる3次元表現に対応する3D一貫性画像を直接生成する手法である。
論文 参考訳(メタデータ) (2023-03-22T18:59:48Z) - A Learning-Based 3D EIT Image Reconstruction Method [3.2116198597240846]
本稿では,ニューロンネットワーク(TN-Net)を用いた3次元EIT画像再構成のための学習的アプローチを提案する。
シミュレーションおよび実験結果から,TN-Netの性能と一般化能力は,一般的な3次元EIT画像再構成アルゴリズムと比較して優れていた。
論文 参考訳(メタデータ) (2022-08-30T12:00:43Z) - Neural 3D Reconstruction in the Wild [86.6264706256377]
そこで我々は,インターネット写真コレクションから効率よく高精度な表面再構成を実現する新しい手法を提案する。
そこで本研究では,これらのシーンにおける再構成性能を評価するための新しいベンチマークとプロトコルを提案する。
論文 参考訳(メタデータ) (2022-05-25T17:59:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。