論文の概要: Concentration bounds for intrinsic dimension estimation using Gaussian kernels
- arxiv url: http://arxiv.org/abs/2512.04861v1
- Date: Thu, 04 Dec 2025 14:45:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-05 21:11:46.225527
- Title: Concentration bounds for intrinsic dimension estimation using Gaussian kernels
- Title(参考訳): ガウス核を用いた固有次元推定のための濃度境界
- Authors: Martin Andersson,
- Abstract要約: 我々は次元推定のための有限サンプル濃度と反集中境界を証明した。
我々の境界は標本サイズ、帯域幅、局所幾何学的および分布的パラメータに明示的に依存する。
また,デリバティブ情報を用いた帯域幅選択を提案し,数値実験において有望であることを示す。
- 参考スコア(独自算出の注目度): 1.157423546614283
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We prove finite-sample concentration and anti-concentration bounds for dimension estimation using Gaussian kernel sums. Our bounds provide explicit dependence on sample size, bandwidth, and local geometric and distributional parameters, characterizing precisely how regularity conditions govern statistical performance. We also propose a bandwidth selection heuristic using derivative information, which shows promise in numerical experiments.
- Abstract(参考訳): ガウス核和を用いた次元推定のための有限サンプル濃度と反集中境界を証明した。
我々の境界は標本のサイズ、帯域幅、局所幾何学的および分布的パラメータにはっきりと依存しており、正規性条件が統計的性能をどのように支配するかを正確に特徴づけている。
また,デリバティブ情報を用いた帯域幅選択ヒューリスティックを提案する。
関連論文リスト
- Efficient Covariance Estimation for Sparsified Functional Data [51.69796254617083]
共分散関数のランダムノット(ランダムノット-空間)とB-スプライン(Bspline-Spatial)推定器は計算的に効率的である。
共分散の漸近的なポイントワイドは、ある規則性条件下でのスパース化された個々の軌跡に対して得られる。
論文 参考訳(メタデータ) (2025-11-23T00:50:33Z) - Sampling and estimation on manifolds using the Langevin diffusion [45.57801520690309]
離散化マルコフ過程に基づく$mu_phi $の線形汎函数の2つの推定器を検討する。
誤差境界は、本質的に定義されたランゲヴィン拡散の離散化を用いてサンプリングと推定のために導出される。
論文 参考訳(メタデータ) (2023-12-22T18:01:11Z) - On diffusion-based generative models and their error bounds: The log-concave case with full convergence estimates [5.13323375365494]
我々は,強い対数対数データの下での拡散に基づく生成モデルの収束挙動を理論的に保証する。
スコア推定に使用される関数のクラスは、スコア関数上のリプシッツネスの仮定を避けるために、リプシッツ連続関数からなる。
この手法はサンプリングアルゴリズムにおいて最もよく知られた収束率をもたらす。
論文 参考訳(メタデータ) (2023-11-22T18:40:45Z) - Distributed Sketching for Randomized Optimization: Exact
Characterization, Concentration and Lower Bounds [54.51566432934556]
我々はヘシアンの形成が困難である問題に対する分散最適化法を検討する。
ランダム化されたスケッチを利用して、問題の次元を減らし、プライバシを保ち、非同期分散システムにおけるストラグラーレジリエンスを改善します。
論文 参考訳(メタデータ) (2022-03-18T05:49:13Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
正規化フローの微分同相性に基づいて、閉領域上の累積分布関数(CDF)を推定する。
一般的なフローアーキテクチャとUCIデータセットに関する実験は,従来の推定器と比較して,サンプル効率が著しく向上したことを示している。
論文 参考訳(メタデータ) (2022-02-23T06:11:49Z) - Robust Estimation for Nonparametric Families via Generative Adversarial
Networks [92.64483100338724]
我々は,高次元ロバストな統計問題を解くためにGAN(Generative Adversarial Networks)を設計するためのフレームワークを提供する。
我々の研究は、これらをロバスト平均推定、第二モーメント推定、ロバスト線形回帰に拡張する。
技術面では、提案したGAN損失は、スムーズで一般化されたコルモゴロフ-スミルノフ距離と見なすことができる。
論文 参考訳(メタデータ) (2022-02-02T20:11:33Z) - A Note on Optimizing Distributions using Kernel Mean Embeddings [94.96262888797257]
カーネル平均埋め込みは、その無限次元平均埋め込みによる確率測度を表す。
カーネルが特徴的である場合、カーネルの総和密度を持つ分布は密度が高いことを示す。
有限サンプル設定でそのような分布を最適化するアルゴリズムを提供する。
論文 参考訳(メタデータ) (2021-06-18T08:33:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。