論文の概要: Edged Weisfeiler-Lehman Algorithm
- arxiv url: http://arxiv.org/abs/2512.05238v1
- Date: Thu, 04 Dec 2025 20:30:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-13 22:40:56.801278
- Title: Edged Weisfeiler-Lehman Algorithm
- Title(参考訳): Edged Weisfeiler-Lehmanアルゴリズム
- Authors: Xiao Yue, Bo Liu, Feng Zhang, Guangzhi Qu,
- Abstract要約: グラフデータのエッジ特徴をさらに活用するためのエッジグラフ同型ネットワーク(EGIN)モデルを提案する。
提案したEGINモデルは,グラフ分類タスクにおけるグラフ学習における優れた性能を示す。
- 参考スコア(独自算出の注目度): 7.015514964759209
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a classical approach on graph learning, the propagation-aggregation methodology is widely exploited by many of Graph Neural Networks (GNNs), wherein the representation of a node is updated by aggregating representations from itself and neighbor nodes recursively. Similar to the propagation-aggregation methodology, the Weisfeiler-Lehman (1-WL) algorithm tests isomorphism through color refinement according to color representations of a node and its neighbor nodes. However, 1-WL does not leverage any edge features (labels), presenting a potential improvement on exploiting edge features in some fields. To address this limitation, we proposed a novel Edged-WL algorithm (E-WL) which extends the original 1-WL algorithm to incorporate edge features. Building upon the E-WL algorithm, we also introduce an Edged Graph Isomorphism Network (EGIN) model for further exploiting edge features, which addresses one key drawback in many GNNs that do not utilize any edge features of graph data. We evaluated the performance of proposed models using 12 edge-featured benchmark graph datasets and compared them with some state-of-the-art baseline models. Experimental results indicate that our proposed EGIN models, in general, demonstrate superior performance in graph learning on graph classification tasks.
- Abstract(参考訳): グラフ学習における古典的なアプローチとして、伝播集約手法はグラフニューラルネットワーク(GNN)の多くによって広く利用されており、ノードの表現は自身と近隣ノードからの表現を再帰的に集約することで更新される。
伝播凝集法と同様に、Weisfeiler-Lehman (1-WL) アルゴリズムは、ノードとその近傍ノードの色表現に従って色洗練による同型性をテストする。
しかし、1-WLはエッジ機能(ラベル)を一切利用せず、一部のフィールドでエッジ機能を利用する際の潜在的な改善を示す。
この制限に対処するため、我々はエッジ特徴を組み込むために元の1-WLアルゴリズムを拡張した新しいEdged-WLアルゴリズム(E-WL)を提案した。
E-WLアルゴリズムを基盤として,グラフデータのエッジ特徴を一切利用しない多くのGNNにおいて,エッジ特徴のさらなる活用を目的としたエッジグラフ同型ネットワーク(EGIN)モデルを導入する。
エッジ機能付きベンチマークグラフデータセット12を用いて提案モデルの性能評価を行い,最先端のベースラインモデルと比較した。
実験結果から,提案したEGINモデルでは,グラフ分類タスクにおけるグラフ学習の性能が向上することが示唆された。
関連論文リスト
- Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
ノード分類タスクにおける大規模グラフの利用は、グラフニューラルネットワーク(GNN)の現実的な応用を妨げる
本稿では,GNNのグラフコアセットについて検討し,スペクトル埋め込みに基づくエゴグラフの選択により相互依存の問題を回避する。
我々のスペクトルグレディグラフコアセット(SGGC)は、数百万のノードを持つグラフにスケールし、モデル事前学習の必要性を排除し、低ホモフィリーグラフに適用する。
論文 参考訳(メタデータ) (2024-05-27T17:52:12Z) - Iterative Graph Neural Network Enhancement via Frequent Subgraph Mining
of Explanations [0.0]
我々は、説明強化グラフ学習(EEGL)と呼ばれるノード分類のためのグラフニューラルネットワーク(GNN)のためのXAIベースのモデル改善アプローチを定式化する。
目的は、説明を用いてGNNの予測性能を改善することである。
EEGLは、学習された"バニラ"GNNから始まる反復的な自己改善アルゴリズムであり、頻繁にサブグラフマイニングを使用して説明サブグラフの関連パターンを見つける。
論文 参考訳(メタデータ) (2024-03-12T17:41:27Z) - Ensemble Quadratic Assignment Network for Graph Matching [52.20001802006391]
グラフマッチングはコンピュータビジョンやパターン認識において一般的に用いられる技法である。
最近のデータ駆動型アプローチは、グラフマッチングの精度を著しく改善した。
データ駆動手法と従来の手法の利点を組み合わせたグラフニューラルネットワーク(GNN)に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2024-03-11T06:34:05Z) - A Simple and Scalable Graph Neural Network for Large Directed Graphs [11.792826520370774]
入力グラフ内のノード表現とエッジ方向認識の様々な組み合わせについて検討する。
そこで本研究では,A2DUGを簡易かつ包括的に分類する手法を提案する。
我々は、A2DUGが様々なデータセットで安定して動作し、最先端の手法と比較して11.29まで精度が向上することを示した。
論文 参考訳(メタデータ) (2023-06-14T06:24:58Z) - A Robust Stacking Framework for Training Deep Graph Models with
Multifaceted Node Features [61.92791503017341]
数値ノード特徴とグラフ構造を入力とするグラフニューラルネットワーク(GNN)は,グラフデータを用いた各種教師付き学習タスクにおいて,優れた性能を示した。
IID(non-graph)データをGNNに簡単に組み込むことはできない。
本稿では、グラフ認識の伝播をIDデータに意図した任意のモデルで融合するロバストな積み重ねフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-16T22:46:33Z) - Representation Power of Graph Neural Networks: Improved Expressivity via
Algebraic Analysis [124.97061497512804]
標準グラフニューラルネットワーク (GNN) はWeisfeiler-Lehman (WL) アルゴリズムよりも差別的な表現を生成する。
また、白い入力を持つ単純な畳み込みアーキテクチャは、グラフの閉経路をカウントする同変の特徴を生じさせることを示した。
論文 参考訳(メタデータ) (2022-05-19T18:40:25Z) - Graph Representation Learning with Individualization and Refinement [19.436520792345064]
グラフニューラルネットワーク(GNN)は、グラフ構造化データ上での表現学習の顕著なモデルとして登場した。
本研究では、個人化・再分極(IR)の古典的アプローチに従う。
我々の手法は、計算複雑性を管理しつつ、よりリッチなノード埋め込みを学習することを可能にする。
論文 参考訳(メタデータ) (2022-03-17T07:50:48Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
典型的な好適なグラフでは、エッジを指向する可能性があり、エッジをそのまま扱うか、あるいは単純に非指向にするかは、GNNモデルの性能に大きな影響を与える。
そこで我々は,グラフの方向性を適応的に学習するモデルを開発し,ノード間の長距離相関を生かした。
論文 参考訳(メタデータ) (2021-11-19T08:54:21Z) - GraphSVX: Shapley Value Explanations for Graph Neural Networks [81.83769974301995]
グラフニューラルネットワーク(GNN)は、幾何データに基づく様々な学習タスクにおいて大きな性能を発揮する。
本稿では,既存のGNN解説者の多くが満足する統一フレームワークを提案する。
GNN用に特別に設計されたポストホックローカルモデル非依存説明法であるGraphSVXを紹介します。
論文 参考訳(メタデータ) (2021-04-18T10:40:37Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
グラフニューラルネットワーク(GNN)はグラフ表現学習において大きな成功を収めている。
GNNは、実際には非常に異なるグラフ部分構造に対して同一の表現を生成する。
より強力なGNNは、最近高階試験を模倣して提案され、基礎となるグラフ構造を疎結合にできないため、非効率である。
本稿では,グラフ表現学習の新たなクラスとして距離分解(DE)を提案する。
論文 参考訳(メタデータ) (2020-08-31T23:15:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。