論文の概要: Multimodal Graph Neural Networks for Prognostic Modeling of Brain Network Reorganization
- arxiv url: http://arxiv.org/abs/2512.06303v1
- Date: Sat, 06 Dec 2025 05:11:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-09 22:03:54.29613
- Title: Multimodal Graph Neural Networks for Prognostic Modeling of Brain Network Reorganization
- Title(参考訳): 脳ネットワーク再構成の予後モデリングのためのマルチモーダルグラフニューラルネットワーク
- Authors: Preksha Girish, Rachana Mysore, Kiran K. N., Hiranmayee R., Shipra Prashanth, Shrey Kumar,
- Abstract要約: 脳ネットワークの動的再構成を理解することは、臨床結果における認知低下、神経学的進歩、個人的変動を予測するために重要である。
本研究では、構造拡散テンソルイメージングとMRIを統合して脳ネットワーク再構成をモデル化するマルチモーダルグラフニューラルネットワークニューロイメージングフレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding the dynamic reorganization of brain networks is critical for predicting cognitive decline, neurological progression, and individual variability in clinical outcomes. This work proposes a multimodal graph neural network framework that integrates structural MRI, diffusion tensor imaging, and functional MRI to model spatiotemporal brain network reorganization. Brain regions are represented as nodes and structural and functional connectivity as edges, forming longitudinal brain graphs for each subject. Temporal evolution is captured via fractional stochastic differential operators embedded within graph-based recurrent networks, enabling the modeling of long-term dependencies and stochastic fluctuations in network dynamics. Attention mechanisms fuse multimodal information and generate interpretable biomarkers, including network energy entropy, graph curvature, fractional memory indices, and modality-specific attention scores. These biomarkers are combined into a composite prognostic index to quantify individual risk of network instability or cognitive decline. Experiments on longitudinal neuroimaging datasets demonstrate both predictive accuracy and interpretability. The results highlight the potential of mathematically rigorous, multimodal graph-based approaches for deriving clinically meaningful biomarkers from existing imaging data without requiring new data collection.
- Abstract(参考訳): 脳ネットワークの動的再構成を理解することは、臨床結果における認知低下、神経学的進歩、個人的変動を予測するために重要である。
本研究では、構造MRI、拡散テンソルイメージング、機能MRIを統合して時空間脳ネットワーク再構成をモデル化するマルチモーダルグラフニューラルネットワークフレームワークを提案する。
脳領域はノードとして表現され、エッジとして構造的および機能的接続が表現され、各被験者の縦方向の脳グラフを形成する。
時間的進化は、グラフベースのリカレントネットワークに埋め込まれた分数確率微分作用素によって捉えられ、ネットワーク力学における長期依存と確率変動のモデリングを可能にする。
注意機構はマルチモーダル情報を融合し、ネットワークエネルギーエントロピー、グラフ曲率、分数メモリインデックス、モーダリティ固有の注意スコアなどの解釈可能なバイオマーカーを生成する。
これらのバイオマーカーは複合的予後指標に結合され、ネットワーク不安定性や認知低下の個々のリスクを定量化する。
縦断的ニューロイメージングデータセットの実験は、予測精度と解釈可能性の両方を示している。
その結果,既存の画像データから臨床的に有意なバイオマーカーを抽出するための,数学的に厳密なマルチモーダルグラフベースのアプローチの可能性を強調した。
関連論文リスト
- Hyperbolic Kernel Graph Neural Networks for Neurocognitive Decline Analysis from Multimodal Brain Imaging [22.883290184028738]
本稿では,マルチモーダル・ニューロイメージングを用いた神経認知下降解析のためのハイパーボリックカーネルグラフ融合フレームワークを提案する。
マルチモーダルグラフ構築モジュール、双曲空間で脳グラフを符号化するグラフ表現学習モジュール、下流予測のための双曲ニューラルネットワークで構成される。
論文 参考訳(メタデータ) (2025-06-24T13:16:37Z) - MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
本稿では,MindFormer を用いたマルチオブジェクト fMRI 信号のセマンティックアライメント手法を提案する。
このモデルは、fMRIから画像生成のための安定拡散モデルや、fMRIからテキスト生成のための大規模言語モデル(LLM)の条件付けに使用できるfMRI条件付き特徴ベクトルを生成するように設計されている。
実験の結果,MindFormerは意味的に一貫した画像とテキストを異なる主題にわたって生成することがわかった。
論文 参考訳(メタデータ) (2024-05-28T00:36:25Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - DBGDGM: Dynamic Brain Graph Deep Generative Model [63.23390833353625]
グラフは機能的磁気画像(fMRI)データから得られる脳活動の自然な表現である。
機能的接続ネットワーク(FCN)として知られる解剖学的脳領域のクラスターは、脳の機能や機能不全を理解するのに有用なバイオマーカーとなる時間的関係を符号化することが知られている。
しかし、以前の研究は脳の時間的ダイナミクスを無視し、静的グラフに焦点を当てていた。
本稿では,脳の領域を時間的に進化するコミュニティにクラスタリングし,非教師なしノードの動的埋め込みを学習する動的脳グラフ深部生成モデル(DBGDGM)を提案する。
論文 参考訳(メタデータ) (2023-01-26T20:45:30Z) - Multi-modal Dynamic Graph Network: Coupling Structural and Functional
Connectome for Disease Diagnosis and Classification [8.67028273829113]
構造的および機能的脳ネットワーク学習のためのマルチモーダル動的グラフ畳み込みネットワーク(MDGCN)を提案する。
本手法は,モーダル間表現のモデル化と動的グラフへの注意的多モデル関連付けの利点を生かした。
論文 参考訳(メタデータ) (2022-10-25T02:41:32Z) - DynDepNet: Learning Time-Varying Dependency Structures from fMRI Data
via Dynamic Graph Structure Learning [58.94034282469377]
下流予測タスクによって誘導されるfMRIデータの最適時間変化依存性構造を学習する新しい手法であるDynDepNetを提案する。
実世界のfMRIデータセットの実験は、性別分類のタスクにおいて、DynDepNetが最先端の結果を達成することを実証している。
論文 参考訳(メタデータ) (2022-09-27T16:32:11Z) - Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling
Model [64.29487107585665]
脳機能ネットワーク上のグラフ表現学習技術は、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を容易にする。
本稿では,脳機能ネットワークからグラフレベル表現を抽出する階層型グラフ表現学習モデルを提案する。
また、モデルの性能をさらに向上させるために、機能的脳ネットワークデータをコントラスト学習のために拡張する新たな戦略を提案する。
論文 参考訳(メタデータ) (2022-07-14T20:03:52Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
脳ネットワーク上のグラフマイニングは、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を促進する可能性がある。
本稿では,Deep Signed Brain Networks (DSBN) と呼ばれる新しいグラフ学習フレームワークを提案する。
臨床表現型および神経変性疾患予測の枠組みを,2つの独立した公開データセットを用いて検証した。
論文 参考訳(メタデータ) (2022-05-06T03:45:36Z) - Modeling Spatio-Temporal Dynamics in Brain Networks: A Comparison of
Graph Neural Network Architectures [0.5033155053523041]
グラフニューラルネットワーク(GNN)は、新しい構造化グラフ信号の解釈を可能にする。
基板上の局所的な機能的相互作用を学習することにより、GNNベースのアプローチが大規模ネットワーク研究に堅牢に拡張可能であることを示す。
論文 参考訳(メタデータ) (2021-12-08T12:57:13Z) - Dynamic Adaptive Spatio-temporal Graph Convolution for fMRI Modelling [0.0]
本稿では,動的適応時間グラフ畳み込み(DASTGCN)モデルを提案する。
提案手法により,レイヤワイドグラフ構造学習モジュールによる脳領域間の動的接続のエンドツーエンド推論が可能となる。
我々は,安静時機能スキャンを用いて,英国ビオバンクのパイプラインを年齢・性別分類タスクとして評価した。
論文 参考訳(メタデータ) (2021-09-26T07:19:47Z) - Ensemble manifold based regularized multi-modal graph convolutional
network for cognitive ability prediction [33.03449099154264]
マルチモーダル機能磁気共鳴イメージング(fMRI)を使用して、脳の接続ネットワークに基づいて個々の行動特性および認知特性を予測することができます。
本稿では,fMRI時系列と各脳領域間の機能接続(FC)を組み込んだ,解釈可能な多モードグラフ畳み込みネットワーク(MGCN)モデルを提案する。
我々は、フィラデルフィア神経開発コホート上のMGCNモデルを検証し、個々の広範囲達成テスト(WRAT)スコアを予測します。
論文 参考訳(メタデータ) (2021-01-20T20:53:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。