論文の概要: Graph Convolutional Long Short-Term Memory Attention Network for Post-Stroke Compensatory Movement Detection Based on Skeleton Data
- arxiv url: http://arxiv.org/abs/2512.06736v1
- Date: Sun, 07 Dec 2025 09:00:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-09 22:03:54.497101
- Title: Graph Convolutional Long Short-Term Memory Attention Network for Post-Stroke Compensatory Movement Detection Based on Skeleton Data
- Title(参考訳): 骨格データに基づくストローク後補償運動検出のためのグラフ畳み込み長期記憶注意ネットワーク
- Authors: Jiaxing Fan, Jiaojiao Liu, Wenkong Wang, Yang Zhang, Xin Ma, Jichen Zhang,
- Abstract要約: 脳卒中後の補償運動を検出するために骨格データに基づくグラフ畳み込み長短期記憶注意ネットワーク(GCN-LSTM-ATT)を提案する。
その結果,GCN-LSTM-ATTモデルの検出精度は0.8580に達した。
- 参考スコア(独自算出の注目度): 8.902942168934741
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most stroke patients experience upper limb motor dysfunction. Compensatory movements are prevalent during rehabilitation training, which is detrimental to patients' long-term recovery. Therefore, detecting compensatory movements is of great significance. In this study, a Graph Convolutional Long Short-Term Memory Attention Network (GCN-LSTM-ATT) based on skeleton data is proposed for the detection of compensatory movements after stroke. Sixteen stroke patients were selected in the research. The skeleton data of the patients performing specific rehabilitation movements were collected using the Kinect depth camera. After data processing, detection models were constructed respectively using the GCN-LSTM-ATT model, the Support Vector Machine(SVM), the K-Nearest Neighbor algorithm(KNN), and the Random Forest(RF). The results show that the detection accuracy of the GCN-LSTM-ATT model reaches 0.8580, which is significantly higher than that of traditional machine learning algorithms. Ablation experiments indicate that each component of the model contributes significantly to the performance improvement. These findings provide a more precise and powerful tool for the detection of compensatory movements after stroke, and are expected to facilitate the optimization of rehabilitation training strategies for stroke patients.
- Abstract(参考訳): ほとんどの脳卒中患者は上肢運動機能障害を経験する。
リハビリテーショントレーニングでは補償運動が一般的であり、患者の長期回復に有害である。
したがって、補償運動を検出することは非常に重要である。
本研究では,脳卒中後の補償運動を検出するために,骨格データに基づくグラフ畳み込み長短期記憶注意ネットワーク(GCN-LSTM-ATT)を提案する。
研究で16名の脳卒中患者が選択された。
Kinect深度カメラを用いて,特定のリハビリテーション運動を行う患者の骨格データを収集した。
データ処理後、GCN-LSTM-ATTモデル、サポートベクトルマシン(SVM)、K-Nearest Neighborアルゴリズム(KNN)、ランダムフォレスト(RF)を用いて検出モデルを構築した。
その結果,GCN-LSTM-ATTモデルの検出精度は0.8580に達した。
アブレーション実験は、モデルの各コンポーネントが性能改善に大きく貢献することを示している。
これらの知見は, 脳卒中患者のリハビリテーショントレーニング戦略の最適化を促進することを目的として, 脳卒中後の補償運動を検出するための,より正確で強力なツールを提供する。
関連論文リスト
- SurgeryLSTM: A Time-Aware Neural Model for Accurate and Explainable Length of Stay Prediction After Spine Surgery [44.119171920037196]
選択的脊椎手術における滞在時間(LOS)予測のための機械学習モデルの開発と評価を行った。
我々は,従来のMLモデルと,マスク付き双方向長短期記憶(BiLSTM)であるオペレーショナルLSTMを比較した。
決定係数(R2)を用いて性能を評価し,説明可能なAIを用いて鍵予測器を同定した。
論文 参考訳(メタデータ) (2025-07-15T01:18:28Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
筋萎縮性側索硬化症(Amyotrophic Lateral Sclerosis、ALS)は、急速に進行する神経変性疾患である。
iDPP@CLEF 2024チャレンジを先導した今回の調査は,アプリから得られるセンサデータを活用することに焦点を当てている。
論文 参考訳(メタデータ) (2024-07-10T19:17:23Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
本稿では,リアルタイム脳波信号解析のための新しいグラフベース残状態更新機構(REST)を提案する。
グラフニューラルネットワークとリカレント構造の組み合わせを活用することで、RESTは、非ユークリッド幾何学とEEGデータ内の時間的依存関係の両方を効率的にキャプチャする。
本モデルは,発作検出と分類作業において高い精度を示す。
論文 参考訳(メタデータ) (2024-06-03T16:30:19Z) - SQUWA: Signal Quality Aware DNN Architecture for Enhanced Accuracy in Atrial Fibrillation Detection from Noisy PPG Signals [37.788535094404644]
心房細動(AF)は脳卒中、心臓病、死亡のリスクを著しく増大させる。
光胸腺造影(PPG)信号は、運動人工物や、しばしば起立条件で遭遇する他の要因による腐敗に影響を受けやすい。
本研究では,一部劣化したPSGから正確な予測の維持方法を学習するための新しい深層学習モデルを提案する。
論文 参考訳(メタデータ) (2024-04-15T01:07:08Z) - Integrative Deep Learning Framework for Parkinson's Disease Early Detection using Gait Cycle Data Measured by Wearable Sensors: A CNN-GRU-GNN Approach [0.3222802562733786]
対象のバイナリ分類に適した,先駆的な深層学習アーキテクチャを提案する。
我々のモデルは、1D畳み込みニューラルネットワーク(CNN)、GRU(Gated Recurrent Units)、GNN(Graph Neural Network)のパワーを利用する。
提案モデルでは, 99.51%, 99.57%, 99.71%, 99.64%のスコアが得られた。
論文 参考訳(メタデータ) (2024-04-09T15:19:13Z) - A gradient-based approach to fast and accurate head motion compensation in cone-beam CT [35.44857854720086]
本稿では,勾配に基づく最適化アルゴリズムを用いたCBCT動作推定の新しい手法を提案する。
従来の手法に比べて19倍の速さで動き推定を劇的に高速化する。
運動補償後の初期平均3mmから0.61mmまでの再投射誤差を低減させる。
論文 参考訳(メタデータ) (2024-01-17T15:37:00Z) - D-STGCNT: A Dense Spatio-Temporal Graph Conv-GRU Network based on transformer for assessment of patient physical rehabilitation [0.30693357740321775]
本稿では,リハビリテーション演習を評価するための新しいグラフベースモデルを提案する。
デンス接続とGRU機構は、大きな3Dスケルトン入力を迅速に処理するために使用される。
KIMOREおよびUI-PRMDデータセットに対する提案手法の評価は,その可能性を強調した。
論文 参考訳(メタデータ) (2023-12-21T00:38:31Z) - Guided Reconstruction with Conditioned Diffusion Models for Unsupervised Anomaly Detection in Brain MRIs [35.46541584018842]
Unsupervised Anomaly Detection (UAD) は、正常なトレーニング分布から異常を外れ値として識別することを目的としている。
生成モデルは、与えられた入力画像に対する健康な脳解剖の再構築を学ぶために使用される。
本稿では,入力画像の潜在表現から得られた付加情報を用いて拡散モデルの復調過程を条件付けることを提案する。
論文 参考訳(メタデータ) (2023-12-07T11:03:42Z) - The Challenge of Fetal Cardiac MRI Reconstruction Using Deep Learning [11.809564612082935]
ディープラーニング手法は、kt-SENSE取得戦略の最適化と、非ゲートkt-SENSE再構築品質の向上に役立つ。
そこで本研究では,kt-SENSEスタイルの取得したデータをインビボの広範囲なデータセットを用いて再構成するための教師付きディープラーニングネットワークについて検討する。
本研究は,母体解剖の詳細な描写を大規模に再現するが,胎児心臓の動的特性は低発現であることを示す。
論文 参考訳(メタデータ) (2023-08-15T17:22:42Z) - Motion Artifacts Detection in Short-scan Dental CBCT Reconstructions [5.147799140853288]
Cone Beam Computed Tomography (CBCT) は歯科診断や治療計画に広く用いられている。
本研究は, 補正アルゴリズムを使わずに, クリーンショートスキャン体積を再構成することのできる, 走査投影の運動自由部分を抽出する枠組みを用いた。
データ不足に対処するために、現実的なモーションシミュレーション戦略とデータ拡張が実装されている。
論文 参考訳(メタデータ) (2023-04-20T08:28:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。