論文の概要: Do Large Language Models Truly Understand Cross-cultural Differences?
- arxiv url: http://arxiv.org/abs/2512.07075v1
- Date: Mon, 08 Dec 2025 01:21:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-09 22:03:54.667638
- Title: Do Large Language Models Truly Understand Cross-cultural Differences?
- Title(参考訳): 大規模言語モデルは文化的相違を完全に理解しているか?
- Authors: Shiwei Guo, Sihang Jiang, Qianxi He, Yanghua Xiao, Jiaqing Liang, Bi Yude, Minggui He, Shimin Tao, Li Zhang,
- Abstract要約: 我々は,大規模言語モデルの異文化間理解と推論を評価するシナリオベースのベンチマークを開発した。
文化理論を基礎として、異文化の能力を9次元に分類する。
データセットは連続的な拡張をサポートし、実験は他の言語への転送可能性を確認する。
- 参考スコア(独自算出の注目度): 53.481048019144644
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: In recent years, large language models (LLMs) have demonstrated strong performance on multilingual tasks. Given its wide range of applications, cross-cultural understanding capability is a crucial competency. However, existing benchmarks for evaluating whether LLMs genuinely possess this capability suffer from three key limitations: a lack of contextual scenarios, insufficient cross-cultural concept mapping, and limited deep cultural reasoning capabilities. To address these gaps, we propose SAGE, a scenario-based benchmark built via cross-cultural core concept alignment and generative task design, to evaluate LLMs' cross-cultural understanding and reasoning. Grounded in cultural theory, we categorize cross-cultural capabilities into nine dimensions. Using this framework, we curated 210 core concepts and constructed 4530 test items across 15 specific real-world scenarios, organized under four broader categories of cross-cultural situations, following established item design principles. The SAGE dataset supports continuous expansion, and experiments confirm its transferability to other languages. It reveals model weaknesses across both dimensions and scenarios, exposing systematic limitations in cross-cultural reasoning. While progress has been made, LLMs are still some distance away from reaching a truly nuanced cross-cultural understanding. In compliance with the anonymity policy, we include data and code in the supplement materials. In future versions, we will make them publicly available online.
- Abstract(参考訳): 近年,大規模言語モデル (LLM) は多言語タスクにおいて高い性能を示した。
その幅広い応用を考えると、異文化間の理解能力は重要な能力である。
しかし、LLMが実際にこの能力を持っているかどうかを評価するための既存のベンチマークには、コンテキストシナリオの欠如、文化横断的な概念マッピングの不十分、文化の深い推論能力の制限の3つの重要な制限がある。
これらのギャップに対処するために、我々は、LLMの異文化間理解と推論を評価するために、異文化間コア概念のアライメントと生成タスク設計によって構築されたシナリオベースのベンチマークであるSAGEを提案する。
文化理論を基礎として、異文化の能力を9次元に分類する。
このフレームワークを用いて、210のコアコンセプトをキュレートし、15の特定の実世界のシナリオに対して4530のテスト項目を構築した。
SAGEデータセットは継続的拡張をサポートし、実験によって他の言語への転送可能性を確認する。
これは、次元とシナリオの両方にわたるモデルの弱点を明らかにし、異文化間の推論において体系的な制限を明らかにする。
進歩はしたものの、LLMは本当に微妙な文化的な理解に達するまでにはまだ遠い。
匿名ポリシーに従って、補足資料にデータとコードを含める。
今後のバージョンでは、それらをオンラインで公開します。
関連論文リスト
- MMA-ASIA: A Multilingual and Multimodal Alignment Framework for Culturally-Grounded Evaluation [91.22008265721952]
MMA-ASIAは、アジア8か国と10か国を対象とする人為的、多言語的、マルチモーダルなベンチマークに重点を置いている。
これは、テキスト、画像(視覚的質問応答)、音声の3つのモードにまたがる入力レベルで整列された最初のデータセットである。
i) 国間の文化的認識格差、(ii) 言語間の整合性、(iii) 言語間の整合性、(iv) 文化知識の一般化、(v) 基礎的妥当性を評価する5次元評価プロトコルを提案する。
論文 参考訳(メタデータ) (2025-10-07T14:12:12Z) - CultureScope: A Dimensional Lens for Probing Cultural Understanding in LLMs [57.653830744706305]
CultureScopeは、大規模な言語モデルにおける文化的理解を評価するための、これまでで最も包括的な評価フレームワークである。
文化的な氷山理論に触発されて、文化知識分類のための新しい次元スキーマを設計する。
実験結果から,文化的理解を効果的に評価できることが示唆された。
論文 参考訳(メタデータ) (2025-09-19T17:47:48Z) - Toward Socially Aware Vision-Language Models: Evaluating Cultural Competence Through Multimodal Story Generation [2.0467354053171243]
本稿では,マルチモーダルストーリー生成による視覚言語モデル(VLM)の文化的能力の総合評価を行う。
分析の結果,文化的に特有な語彙が多岐にわたる文化的適応能力,家族用語,地理的マーカーが明らかとなった。
文化的な能力はアーキテクチャによって劇的に変化し、いくつかのモデルは逆の文化的アライメントを示し、自動化されたメトリクスは人間の評価と矛盾するアーキテクチャ上のバイアスを示しています。
論文 参考訳(メタデータ) (2025-08-22T19:39:02Z) - Grounding Multilingual Multimodal LLMs With Cultural Knowledge [48.95126394270723]
本稿では,MLLMを文化的知識に根ざしたデータ中心型アプローチを提案する。
CulturalGroundは、42の国と39の言語にまたがる2200万の高品質で文化的に豊かなVQAペアで構成されている。
我々は,MLLM CulturalPangeaをCulturalGround上で学習し,汎用性を維持するために,標準の多言語指導訓練データをインターリーブする。
論文 参考訳(メタデータ) (2025-08-10T16:24:11Z) - TCC-Bench: Benchmarking the Traditional Chinese Culture Understanding Capabilities of MLLMs [13.069833806549914]
中国伝統文化理解ベンチマーク(TCC-Bench)を提案する。
TCC-Benchは、文化的に豊かで視覚的に多様なデータで構成されており、博物館の工芸品、日常の生活シーン、漫画、その他の文化的に重要な文脈の画像が組み込まれている。
テキストのみのモードでGPT-4oを利用する半自動パイプラインを採用し、候補問題を生成し、続いて人間によるキュレーションを行い、データ品質を保証し、潜在的なデータ漏洩を回避する。
論文 参考訳(メタデータ) (2025-05-16T14:10:41Z) - CultureVLM: Characterizing and Improving Cultural Understanding of Vision-Language Models for over 100 Countries [63.00147630084146]
視覚言語モデル(VLM)は高度な人間とAIの相互作用を持つが、文化的な理解に苦慮している。
CultureVerseは大規模なマルチモーダルベンチマークで、682の文化的概念、188の国/地域、15の文化的概念、3の質問タイプをカバーしている。
本稿では,文化理解の大幅な向上を実現するために,我々のデータセットを微調整したVLMのシリーズであるCultureVLMを提案する。
論文 参考訳(メタデータ) (2025-01-02T14:42:37Z) - How Well Do LLMs Identify Cultural Unity in Diversity? [12.982460687543952]
本稿では,概念の文化的統一性を理解するために,デコーダのみの大規模言語モデル(LLM)を評価するためのベンチマークデータセットを提案する。
CUNITは、10か国で285の伝統的な文化的概念に基づいて構築された1,425の評価例で構成されている。
高い関連性を持つ異文化のコンセプトペアを識別するLLMの能力を評価するために,コントラストマッチングタスクを設計する。
論文 参考訳(メタデータ) (2024-08-09T14:45:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。