論文の概要: Enhancing Agentic RL with Progressive Reward Shaping and Value-based Sampling Policy Optimization
- arxiv url: http://arxiv.org/abs/2512.07478v1
- Date: Mon, 08 Dec 2025 11:59:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-09 22:03:54.873013
- Title: Enhancing Agentic RL with Progressive Reward Shaping and Value-based Sampling Policy Optimization
- Title(参考訳): プログレッシブリワード整形と値に基づくサンプリングポリシ最適化によるエージェントRLの強化
- Authors: Zhuoran Zhuang, Ye Chen, Jianghao Su, Chao Luo, Luhui Liu, Xia Zeng,
- Abstract要約: Tool-Integrated Reasoning (TIR)で強化されたLarge Language Models (LLM)は、反復的に計画し、外部ツールを呼び、返却された情報を統合して、複雑な長期的推論タスクを解決する。
エージェント強化学習(Agentic RL)は、ツール・インタラクションの完全な軌跡よりも、そのようなモデルを最適化する。
1)バイナリ0-1検証信号のようなスパースで非インストラクティブな報酬は、中間ステップの限られたガイダンスと緩やかな収束を与える。
本稿では,PRS(Progressive Reward Shaping)とVSPO(Value-based Sampling Policy Optimization)の2つの補完手法を提案する。
- 参考スコア(独自算出の注目度): 13.475938754147625
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) empowered with Tool-Integrated Reasoning (TIR) can iteratively plan, call external tools, and integrate returned information to solve complex, long-horizon reasoning tasks. Agentic Reinforcement Learning (Agentic RL) optimizes such models over full tool-interaction trajectories, but two key challenges hinder effectiveness: (1) Sparse, non-instructive rewards, such as binary 0-1 verifiable signals, provide limited guidance for intermediate steps and slow convergence; (2) Gradient degradation in Group Relative Policy Optimization (GRPO), where identical rewards within a rollout group yield zero advantage, reducing sample efficiency and destabilizing training. To address these challenges, we propose two complementary techniques: Progressive Reward Shaping (PRS) and Value-based Sampling Policy Optimization (VSPO). PRS is a curriculum-inspired reward design that introduces dense, stage-wise feedback - encouraging models to first master parseable and properly formatted tool calls, then optimize for factual correctness and answer quality. We instantiate PRS for short-form QA (with a length-aware BLEU to fairly score concise answers) and long-form QA (with LLM-as-a-Judge scoring to prevent reward hacking). VSPO is an enhanced GRPO variant that replaces low-value samples with prompts selected by a task-value metric balancing difficulty and uncertainty, and applies value-smoothing clipping to stabilize gradient updates. Experiments on multiple short-form and long-form QA benchmarks show that PRS consistently outperforms traditional binary rewards, and VSPO achieves superior stability, faster convergence, and higher final performance compared to PPO, GRPO, CISPO, and SFT-only baselines. Together, PRS and VSPO yield LLM-based TIR agents that generalize better across domains.
- Abstract(参考訳): Tool-Integrated Reasoning (TIR)で強化されたLarge Language Models (LLM)は、反復的に計画し、外部ツールを呼び、返却された情報を統合して、複雑な長期的推論タスクを解決する。
エージェント強化学習(Agentic Reinforcement Learning, エージェント強化学習)は, ツール・インタラクション・トラジェクトリ全体を通じてそのようなモデルを最適化するが, 有効性を阻害する2つの主要な課題である。(1) スパースで非インストラクティブな報奨(バイナリ0-1検証信号など)は,中間ステップと緩やかな収束の限定的なガイダンスを提供する; (2) グループ相対政策最適化(GRPO)におけるグラディエント劣化(GRPO)では,ロールアウトグループ内の同一報酬がゼロ優位となり, サンプル効率が低下し, トレーニングが不安定になる。
これらの課題に対処するために,プログレッシブ・リワード・シェイピング(PRS)と値ベースサンプリング・ポリシー・最適化(VSPO)の2つの補完手法を提案する。
PRSはカリキュラムにインスパイアされた報酬設計で、密集した段階的なフィードバックを導入します。
ショートフォームQA(簡潔な回答を適切にスコアするBLEU)とロングフォームQA(報酬ハッキングを防ぐためのLLM-as-a-Judgeスコア)のPSSをインスタンス化する。
VSPOは、低い値のサンプルをタスク値のメトリクスバランスの困難さと不確実性によって選択されたプロンプトに置き換える拡張GRPOの亜種であり、勾配更新を安定化するために値平滑なクリッピングを適用している。
複数のショートフォームおよびロングフォームQAベンチマークの実験では、PSRは従来のバイナリ報酬よりも一貫して優れており、VSPOはPPO、GRPO、CISPO、SFTのみのベースラインと比較して、安定性、収束性、最終性能が向上している。
PRS と VSPO は共に LLM ベースの TIR エージェントを生成し、ドメインをまたいでより一般化する。
関連論文リスト
- PROPA: Toward Process-level Optimization in Visual Reasoning via Reinforcement Learning [30.44007644340425]
本稿では,モンテカルロ木探索 (MCTS) とGRPOを統合した新しいフレームワーク PROPA について紹介する。
7つのベンチマークと4つのVLMバックボーンで、PROPAはSFTとRLVRベースのベースラインを一貫して上回っている。
ドメイン内タスクで最大17.0%、ドメイン外タスクで最大21.0%のゲインを達成する。
論文 参考訳(メタデータ) (2025-11-13T13:06:12Z) - Information Gain-based Policy Optimization: A Simple and Effective Approach for Multi-Turn LLM Agents [28.145430029174577]
大規模言語モデル(LLM)ベースのエージェントは、外部環境と対話する能力を高めるために強化学習(RL)でますます訓練されている。
既存のアプローチは通常、最終回答でのみ提供される結果に基づく報酬に依存します。
本稿では,情報ゲインに基づくポリシー最適化(IGPO)を提案する。
論文 参考訳(メタデータ) (2025-10-16T17:59:32Z) - MMR1: Enhancing Multimodal Reasoning with Variance-Aware Sampling and Open Resources [113.33902847941941]
VAS (Variance-Aware Sampling) は、Variance Promotion Score (VPS) によって導かれるデータ選択戦略である。
我々は、1.6MのCoT冷間開始データと15kのRLQAペアを含む大規模かつ慎重にキュレートされたリソースをリリースする。
数学的推論ベンチマークによる実験では、キュレートされたデータと提案されたVASの有効性が示されている。
論文 参考訳(メタデータ) (2025-09-25T14:58:29Z) - Agentic Reinforcement Learning with Implicit Step Rewards [92.26560379363492]
大規模言語モデル (LLMs) は強化学習 (agentic RL) を用いた自律的エージェントとして発展している。
我々は,標準RLアルゴリズムとシームレスに統合された一般的なクレジット割り当て戦略であるエージェントRL(iStar)について,暗黙的なステップ報酬を導入する。
我々は,WebShopとVisualSokobanを含む3つのエージェントベンチマークと,SOTOPIAにおける検証不可能な報酬とのオープンなソーシャルインタラクションについて評価した。
論文 参考訳(メタデータ) (2025-09-23T16:15:42Z) - Accelerating RL for LLM Reasoning with Optimal Advantage Regression [52.0792918455501]
本稿では,最適優位関数を直接近似する新しい2段階ポリシー最適化フレームワークを提案する。
A$*-POは、幅広い数学的推論ベンチマークで競合性能を達成する。
PPO、GRPO、REBELと比較して、トレーニング時間を最大2$times$、ピークメモリ使用率を30%以上削減する。
論文 参考訳(メタデータ) (2025-05-27T03:58:50Z) - VerIPO: Cultivating Long Reasoning in Video-LLMs via Verifier-Gudied Iterative Policy Optimization [59.39976343879587]
VerIPOは、深く長期的な推論チェーンを生成するためのビデオLLMの能力を徐々に改善することを目指している。
トレーニングループはGRPOの拡張検索とDPOのターゲット最適化の恩恵を受けている。
我々の訓練されたモデルは、大規模命令調整ビデオ-LLMの直接推定を超えている。
論文 参考訳(メタデータ) (2025-05-25T06:41:28Z) - VinePPO: Refining Credit Assignment in RL Training of LLMs [66.80143024475635]
我々は,言語環境の柔軟性を利用してモンテカルロをベースとした推定値を計算する,簡単なアプローチであるVinePPOを提案する。
本手法は,MATHおよびGSM8Kデータセット間のPPOおよび他のベースラインをウォールクロック時間以下で連続的に上回る。
論文 参考訳(メタデータ) (2024-10-02T15:49:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。