論文の概要: PROPA: Toward Process-level Optimization in Visual Reasoning via Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2511.10279v1
- Date: Fri, 14 Nov 2025 01:43:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-14 22:53:22.791934
- Title: PROPA: Toward Process-level Optimization in Visual Reasoning via Reinforcement Learning
- Title(参考訳): PROPA:強化学習による視覚推論におけるプロセスレベルの最適化に向けて
- Authors: Yanbei Jiang, Chao Lei, Yihao Ding, Krista Ehinger, Jey Han Lau,
- Abstract要約: 本稿では,モンテカルロ木探索 (MCTS) とGRPOを統合した新しいフレームワーク PROPA について紹介する。
7つのベンチマークと4つのVLMバックボーンで、PROPAはSFTとRLVRベースのベースラインを一貫して上回っている。
ドメイン内タスクで最大17.0%、ドメイン外タスクで最大21.0%のゲインを達成する。
- 参考スコア(独自算出の注目度): 30.44007644340425
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Despite significant progress, Vision-Language Models (VLMs) still struggle with complex visual reasoning, where multi-step dependencies cause early errors to cascade through the reasoning chain. Existing post-training paradigms are limited: Supervised Fine-Tuning (SFT) relies on costly step-level annotations, while Reinforcement Learning with Verifiable Rewards (RLVR) methods like GRPO provide only sparse, outcome-level feedback, hindering stable optimization. We introduce PROPA (Process-level Reasoning Optimization with interleaved Policy Alignment), a novel framework that integrates Monte Carlo Tree Search (MCTS) with GRPO to generate dense, process-level rewards and optimize reasoning at each intermediate step without human annotations. To overcome the cold-start problem, PROPA interleaves GRPO updates with SFT, enabling the model to learn from both successful and failed reasoning trajectories. A Process Reward Model (PRM) is further trained to guide inference-time search, aligning the test-time search with the training signal. Across seven benchmarks and four VLM backbones, PROPA consistently outperforms both SFT- and RLVR-based baselines. It achieves up to 17.0% gains on in-domain tasks and 21.0% gains on out-of-domain tasks compared to existing state-of-the-art, establishing a strong reasoning and generalization capability for visual reasoning tasks. The code isavailable at: https://github.com/YanbeiJiang/PROPA.
- Abstract(参考訳): VLM(Vision-Language Models)は大きな進歩にもかかわらず、複雑な視覚的推論に苦慮している。
Supervised Fine-Tuning (SFT)はコストのかかるステップレベルのアノテーションに依存し、GRPOのようなReinforcement Learning with Verifiable Rewards (RLVR)メソッドはスパースで結果レベルのフィードバックのみを提供し、安定した最適化を妨げる。
ProPA(Process-level Reasoning Optimization with interleaved Policy Alignment)は,モンテカルロ木探索(MCTS)とGRPOを統合して,密集したプロセスレベルの報酬を生成し,中間段階の推論を人間のアノテーションなしで最適化する新しいフレームワークである。
コールドスタート問題を克服するため、PROPAはGRPO更新をSFTとインターリーブし、モデルが成功したことと失敗した推論軌道から学習できるようにする。
プロセス・リワード・モデル(PRM)は、推論時探索を誘導し、テスト時探索とトレーニング信号との整合性を持たせるためにさらに訓練される。
7つのベンチマークと4つのVLMバックボーンで、PROPAはSFTとRLVRベースのベースラインを一貫して上回っている。
ドメイン内タスクの最大17.0%、ドメイン外タスクの最大21.0%のゲインを実現し、視覚的推論タスクの強力な推論と一般化能力を確立する。
コードはhttps://github.com/YanbeiJiang/PROPA.comで入手できる。
関連論文リスト
- Scaf-GRPO: Scaffolded Group Relative Policy Optimization for Enhancing LLM Reasoning [49.290631188365786]
Scaf-GRPOは、モデルの独立した学習が停滞した時に介入するトレーニングフレームワークである。
これはQwen2.5-Math-7Bモデルのパス@1スコアを、バニラGRPOベースラインよりも44.3%向上させる。
この結果から、我々のフレームワークは、それまで到達範囲を超えていた問題を解決するモデルの能力を解き放つ、堅牢で効果的な方法論を提供することを示した。
論文 参考訳(メタデータ) (2025-10-22T17:41:30Z) - Agentic Reinforcement Learning with Implicit Step Rewards [92.26560379363492]
大規模言語モデル (LLMs) は強化学習 (agentic RL) を用いた自律的エージェントとして発展している。
我々は,標準RLアルゴリズムとシームレスに統合された一般的なクレジット割り当て戦略であるエージェントRL(iStar)について,暗黙的なステップ報酬を導入する。
我々は,WebShopとVisualSokobanを含む3つのエージェントベンチマークと,SOTOPIAにおける検証不可能な報酬とのオープンなソーシャルインタラクションについて評価した。
論文 参考訳(メタデータ) (2025-09-23T16:15:42Z) - Scale, Don't Fine-tune: Guiding Multimodal LLMs for Efficient Visual Place Recognition at Test-Time [12.659582318581606]
Vision Foundation Models (VFM) や Multimodal Large Language Models (MLLM) といった現在のアプローチでは意味理解が強化されているが、微調整時に高い計算オーバーヘッドと限られたクロスドメイン転送性に悩まされている。
本稿では,直接類似度スコアリングのためのガイダンスベースの手法を用いて,視覚言語アライメント機能を活用したテスト時間スケーリング(TTS)を用いた新しいフレームワークを提案する。
提案手法では,長さ制御可能なスコアアウトプットを生成する構造的プロンプトを用いることで,2段階処理を除去する。
論文 参考訳(メタデータ) (2025-09-02T09:25:13Z) - COPO: Consistency-Aware Policy Optimization [17.328515578426227]
強化学習は、複雑な問題解決タスクにおける大規模言語モデル(LLM)の推論能力を大幅に向上させた。
近年、DeepSeek R1の導入により、ルールベースの報酬をコンピューティングの利点関数の低コストな代替手段として活用し、ポリシー最適化を導くことへの関心が高まっている。
本稿では,結果整合性に基づくグローバルな報酬構造を導入する,整合性を考慮したポリシー最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2025-08-06T07:05:18Z) - Enhancing Spatial Reasoning in Vision-Language Models via Chain-of-Thought Prompting and Reinforcement Learning [0.42855555838080844]
本研究では,視覚言語モデル(VLM)の空間的推論能力について,Chain-of-Thoughtプロンプトと強化学習を通して検討した。
モデルが解答の前に推論ステップを生成する単純なCoT形式は、モデルの本来の性能を損なう可能性がある。
対照的に、シーングラフ(SceneGraph CoT)に基づく構造化マルチステージプロンプトは空間推論の精度を大幅に向上させる。
論文 参考訳(メタデータ) (2025-07-06T10:51:12Z) - Implicit Reward as the Bridge: A Unified View of SFT and DPO Connections [65.36449542323277]
本稿では,Large Language Model (LLM) 後の学習において,SFT(Supervised Fine-Tuning) と優先学習を統合した理論フレームワークを提案する。
そこで本研究では,学習率の簡易かつ効果的な削減手法を提案する。
論文 参考訳(メタデータ) (2025-06-15T05:42:29Z) - TGRPO :Fine-tuning Vision-Language-Action Model via Trajectory-wise Group Relative Policy Optimization [12.061547251822326]
Trajectory-based Group Relative Policy Optimization (TGRPO)は、Visual-Language-Action(VLA)モデルのためのオンラインRLベースのトレーニングフレームワークである。
TGRPOの平均成功率は80.7%で、これはスーパーバイザードファインチューニング(SFT)よりも4.2%高く、他の代表的RLベースのポストトレーニング手法よりも優れていた。
論文 参考訳(メタデータ) (2025-06-10T04:27:49Z) - RaCT: Ranking-aware Chain-of-Thought Optimization for LLMs [30.216174551427443]
大規模言語モデル(LLM)は、テキスト再ランクタスクにおいて顕著な可能性を示している。
LLMをランク付けタスクに特化するための従来の微調整手法は、しばしばモデルの汎用能力を著しく低下させる。
本稿では,CoT(Chain-of-Thought)と革新的な2段階トレーニングパイプラインを戦略的に組み合わせた手法を提案する。
論文 参考訳(メタデータ) (2024-12-18T23:24:15Z) - VinePPO: Refining Credit Assignment in RL Training of LLMs [66.80143024475635]
我々は,言語環境の柔軟性を利用してモンテカルロをベースとした推定値を計算する,簡単なアプローチであるVinePPOを提案する。
本手法は,MATHおよびGSM8Kデータセット間のPPOおよび他のベースラインをウォールクロック時間以下で連続的に上回る。
論文 参考訳(メタデータ) (2024-10-02T15:49:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。