論文の概要: High-Dimensional Change Point Detection using Graph Spanning Ratio
- arxiv url: http://arxiv.org/abs/2512.07541v1
- Date: Mon, 08 Dec 2025 13:22:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-09 22:03:54.903654
- Title: High-Dimensional Change Point Detection using Graph Spanning Ratio
- Title(参考訳): グラフスパンニング比を用いた高次元変化点検出
- Authors: Youngwen Sun, Katerina Papagiannouli, Vladimir Spokoiny,
- Abstract要約: グラフベースの手法に着想を得て,オフラインデータとオンラインデータの両方の変化を識別する新しいグラフスパンニングアルゴリズムを提案する。
このアルゴリズムは,変化の大きさがミニマックス分離率の下限を超えると,高い検出能力が得られることを示す。
- 参考スコア(独自算出の注目度): 0.764671395172401
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Inspired by graph-based methodologies, we introduce a novel graph-spanning algorithm designed to identify changes in both offline and online data across low to high dimensions. This versatile approach is applicable to Euclidean and graph-structured data with unknown distributions, while maintaining control over error probabilities. Theoretically, we demonstrate that the algorithm achieves high detection power when the magnitude of the change surpasses the lower bound of the minimax separation rate, which scales on the order of $\sqrt{nd}$. Our method outperforms other techniques in terms of accuracy for both Gaussian and non-Gaussian data. Notably, it maintains strong detection power even with small observation windows, making it particularly effective for online environments where timely and precise change detection is critical.
- Abstract(参考訳): 低次元から高次元のオフラインデータとオンラインデータの両方の変化を識別する新しいグラフスパンニングアルゴリズムを提案する。
この汎用的なアプローチは、エラー確率の制御を維持しながら、未知の分布を持つユークリッドおよびグラフ構造化データに適用できる。
理論的には、変更の大きさがミニマックス分離レートの下限を超えると、そのアルゴリズムは高い検出力を達成する。
本手法はガウス的および非ガウス的データの精度において他の手法よりも優れている。
特に、小さな観測窓でも強力な検出能力を保ち、時間的かつ正確な変更検出が重要となるオンライン環境において特に有効である。
関連論文リスト
- Learning Time-Varying Graphs from Incomplete Graph Signals [1.7430416823420511]
グラフから欠落したデータを出力する問題を解くために,効率的な交互方向乗算アルゴリズムを開発した。
提案したADMMスキームが収束し,定常点を導出することを示す。
論文 参考訳(メタデータ) (2025-10-19T11:12:13Z) - Online Proximal ADMM for Graph Learning from Streaming Smooth Signals [9.34612743192798]
我々は,潜伏グラフ上でスムーズな観測ストリームを用いたオンライングラフ学習のための新しいアルゴリズムを開発した。
我々のモダス・オペランは、グラフ信号を逐次処理し、メモリと計算コストを抑えることです。
提案手法は,現在最先端のオンライングラフ学習ベースラインと比較して,(準最適性の観点から)追跡性能が向上することを示す。
論文 参考訳(メタデータ) (2024-09-19T17:12:03Z) - Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
本稿では,属性付きグラフデータに対する新しいDeep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE)を提案する。
提案手法は,最先端のベースラインアルゴリズムを,一般的なデータセット間でのダウンストリームタスクの差を大きく越える。
論文 参考訳(メタデータ) (2024-01-12T17:57:07Z) - Low-rank extended Kalman filtering for online learning of neural
networks from streaming data [71.97861600347959]
非定常データストリームから非線形関数のパラメータを推定するための効率的なオンライン近似ベイズ推定アルゴリズムを提案する。
この方法は拡張カルマンフィルタ (EKF) に基づいているが、新しい低ランク+斜角行列分解法を用いている。
変分推論に基づく手法とは対照的に,本手法は完全に決定論的であり,ステップサイズチューニングを必要としない。
論文 参考訳(メタデータ) (2023-05-31T03:48:49Z) - High dimensional change-point detection: a complete graph approach [0.0]
低次元から高次元のオンラインデータから平均と分散の変化を検出するための完全なグラフベース変化点検出アルゴリズムを提案する。
グラフ構造に着想を得て,高次元データをメトリクスにマッピングするグラフスパンニング比を導入する。
提案手法は,小型かつ複数個のスキャニングウィンドウで高い検出能力を有し,オンライン環境における変化点のタイムリーな検出を可能にする。
論文 参考訳(メタデータ) (2022-03-16T15:59:20Z) - Fast and Accurate Anomaly Detection in Dynamic Graphs with a Two-Pronged
Approach [49.25767340466445]
動的グラフにおける異常検出のためのオンラインアルゴリズムAnomRankを提案する。
AnomRank氏は、異常を示す2つの新しいメトリクスを定義する2段階のアプローチを使用している。
理論的,実験的に,この2つのアプローチが共通の2種類の異常の検出に成功していることを示す。
論文 参考訳(メタデータ) (2020-11-26T01:38:27Z) - Offline detection of change-points in the mean for stationary graph
signals [55.98760097296213]
グラフ信号定常性の概念に依存するオフライン手法を提案する。
我々の検出器は、漸近的でない不等式オラクルの証拠を伴っている。
論文 参考訳(メタデータ) (2020-06-18T15:51:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。