論文の概要: Probabilistic Multi-Agent Aircraft Landing Time Prediction
- arxiv url: http://arxiv.org/abs/2512.08281v1
- Date: Tue, 09 Dec 2025 06:27:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-10 22:28:07.836225
- Title: Probabilistic Multi-Agent Aircraft Landing Time Prediction
- Title(参考訳): 確率的多エージェント航空機着陸時間予測
- Authors: Kyungmin Kim, Seokbin Yoon, Keumjin Lee,
- Abstract要約: 本稿では,複数の航空機の着陸時間を分布として提供する確率的マルチエージェント航空機着陸時間予測フレームワークを提案する。
韓国の仁川国際空港のターミナル空域から収集した航空交通監視データセットを用いて,提案手法の評価を行った。
- 参考スコア(独自算出の注目度): 3.7755043254577654
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate and reliable aircraft landing time prediction is essential for effective resource allocation in air traffic management. However, the inherent uncertainty of aircraft trajectories and traffic flows poses significant challenges to both prediction accuracy and trustworthiness. Therefore, prediction models should not only provide point estimates of aircraft landing times but also the uncertainties associated with these predictions. Furthermore, aircraft trajectories are frequently influenced by the presence of nearby aircraft through air traffic control interventions such as radar vectoring. Consequently, landing time prediction models must account for multi-agent interactions in the airspace. In this work, we propose a probabilistic multi-agent aircraft landing time prediction framework that provides the landing times of multiple aircraft as distributions. We evaluate the proposed framework using an air traffic surveillance dataset collected from the terminal airspace of the Incheon International Airport in South Korea. The results demonstrate that the proposed model achieves higher prediction accuracy than the baselines and quantifies the associated uncertainties of its outcomes. In addition, the model uncovered underlying patterns in air traffic control through its attention scores, thereby enhancing explainability.
- Abstract(参考訳): 航空機の正確な着陸時間予測は、航空交通管理において効果的な資源配分に不可欠である。
しかし、航空機の軌道や交通の流れの固有の不確実性は、予測精度と信頼性の両方に重大な課題をもたらす。
したがって、予測モデルは、航空機の着陸時刻の点推定だけでなく、これらの予測に関連する不確実性も提供すべきである。
さらに、航空機の軌道は、レーダー・ベクターのような航空交通管制の介入によって、近接する航空機の存在によってしばしば影響を受ける。
したがって、着陸時の予測モデルは、空域におけるマルチエージェント相互作用を考慮しなければならない。
本研究では,複数の航空機の着陸時間を分布として提供する確率的マルチエージェント航空機着陸時間予測フレームワークを提案する。
韓国の仁川国際空港のターミナル空域から収集した航空交通監視データセットを用いて,提案手法の評価を行った。
その結果,提案モデルがベースラインよりも高い予測精度を達成し,関連する結果の不確かさを定量化できることが示唆された。
さらに,本モデルでは,航空交通制御の基本的なパターンを注意点を通じて明らかにし,説明可能性を高めた。
関連論文リスト
- Forecasting Fails: Unveiling Evasion Attacks in Weather Prediction Models [60.728124907335]
本研究では,気象適応型対向摂動最適化(WAAPO)を紹介した。
WAAPOは、チャネルの間隔、空間的局所化、滑らかさの制約を取り入れ、摂動が物理的に現実的で知覚不能であることを保証することでこれを達成している。
我々の実験は、AI駆動予測モデルにおける重要な脆弱性を強調しており、初期状態への小さな摂動が大きな逸脱をもたらす可能性がある。
論文 参考訳(メタデータ) (2025-12-09T17:20:56Z) - ITPNet: Towards Instantaneous Trajectory Prediction for Autonomous Driving [46.17683799762322]
エージェントの軌道予測は自動運転車の安全性に不可欠である。
従来のアプローチは通常、エージェントの将来の軌道を予測するのに十分な長期の軌道に依存する。
ITPNetと呼ばれる汎用かつプラグアンドプレイの即時軌道予測手法を提案する。
論文 参考訳(メタデータ) (2024-12-10T10:09:41Z) - Airport Delay Prediction with Temporal Fusion Transformers [24.280246809961945]
本研究は,米国最上位30空港において,新しい時空核融合変圧器モデルを適用し,第4四半期の空港到着遅延を予測することを提案する。
我々のモデルには、空港の需要と容量予測、歴史的な空港の運転効率情報、空港の風と可視性、さらには気象や交通条件などが含まれる。
論文 参考訳(メタデータ) (2024-05-14T03:27:15Z) - Streaming Motion Forecasting for Autonomous Driving [71.7468645504988]
ストリーミングデータにおける将来の軌跡を問うベンチマークを導入し,これを「ストリーミング予測」と呼ぶ。
我々のベンチマークは本質的に、スナップショットベースのベンチマークでは見過ごされていない安全上の問題であるエージェントの消失と再出現を捉えている。
我々は,任意のスナップショットベースの予測器をストリーミング予測器に適応させることのできる,"Predictive Streamer"と呼ばれるプラグアンドプレイメタアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-02T17:13:16Z) - Learning Generative Models for Climbing Aircraft from Radar Data [0.0]
本稿では,標準航空機データ(BADA)モデルがデータから学習した推力の関数的補正によって強化された登山用航空機の生成モデルを提案する。
この手法には3つの特徴がある: BADAと比較すると26.7%の誤差で到着時刻の予測;テストデータと比較すると現実的な軌道を生成する。
論文 参考訳(メタデータ) (2023-09-26T13:53:53Z) - Inferring Traffic Models in Terminal Airspace from Flight Tracks and Procedures [39.89295870460643]
本稿では,レーダ監視データから収集したプロシージャデータとフライトトラックから可変性を学習可能な簡易確率モデルを提案する。
我々は、ガウス混合モデルから一連の偏差をサンプリングし、航空機の軌道を再構築することで合成軌道を生成する。
本研究は、ジョン・F・ケネディ国際空港の着地軌道と着地手順に関するモデルについて紹介する。
論文 参考訳(メタデータ) (2023-03-17T13:58:06Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
動的トラフィックシナリオでは、決定論的予測に基づく計画は信頼できない。
著者らは、決定論的アプローチが捉えられない近似を用いて予測中の不確実性を定量化する。
将来の状態の不確実性に対する降雨重量と長期予測の影響について検討した。
論文 参考訳(メタデータ) (2022-05-04T04:23:38Z) - Phased Flight Trajectory Prediction with Deep Learning [8.898269198985576]
過去10年間で民間航空会社や民間機が前例のない増加を遂げたことは、航空交通管理の課題となっている。
正確な飛行軌跡予測は、安全かつ秩序ある飛行の決定に寄与する航空輸送管理において非常に重要である。
本研究では,大型旅客・輸送航空機の飛行軌道予測における最先端手法よりも優れた位相付き飛行軌道予測フレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-17T02:16:02Z) - Heterogeneous-Agent Trajectory Forecasting Incorporating Class
Uncertainty [54.88405167739227]
本稿では,エージェントのクラス確率を明示的に組み込んだヘテロジニアスエージェント軌道予測手法であるHAICUを提案する。
さらに,新たな挑戦的な実世界の自動運転データセットであるpupも紹介する。
軌道予測にクラス確率を組み込むことで,不確実性に直面した性能が著しく向上することを示す。
論文 参考訳(メタデータ) (2021-04-26T10:28:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。