論文の概要: Studying and Automating Issue Resolution for Software Quality
- arxiv url: http://arxiv.org/abs/2512.10238v1
- Date: Thu, 11 Dec 2025 02:44:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-12 16:15:42.174451
- Title: Studying and Automating Issue Resolution for Software Quality
- Title(参考訳): ソフトウェア品質に関する課題解決の学習と自動化
- Authors: Antu Saha,
- Abstract要約: 本研究は3つの相補的な方向を通して課題に取り組むことを目的とする。
まず, LLM推論とアプリケーション固有の情報を活用する手法を提案することにより, 報告品質の向上を図る。
第2に、従来のAI拡張システムとAI拡張システムの両方において、開発者を経験的に特徴づけます。
第3に、バギーUIのローカライゼーションやソリューション識別など、認知的要求の解決タスクを自動化する。
- 参考スコア(独自算出の注目度): 1.7767466724342065
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Effective issue resolution is crucial for maintaining software quality. Yet developers frequently encounter challenges such as low-quality issue reports, limited understanding of real-world workflows, and a lack of automated support. This research aims to address these challenges through three complementary directions. First, we enhance issue report quality by proposing techniques that leverage LLM reasoning and application-specific information. Second, we empirically characterize developer workflows in both traditional and AI-augmented systems. Third, we automate cognitively demanding resolution tasks, including buggy UI localization and solution identification, through ML, DL, and LLM-based approaches. Together, our work delivers empirical insights, practical tools, and automated methods to advance AI-driven issue resolution, supporting more maintainable and high-quality software systems.
- Abstract(参考訳): ソフトウェアの品質を維持するためには、効果的な課題解決が不可欠です。
しかし、開発者はしばしば、品質の低いイシューレポート、現実世界のワークフローの限られた理解、自動サポートの欠如といった課題に直面します。
本研究の目的は,これらの課題を3つの相補的な方向から解決することである。
まず, LLM推論とアプリケーション固有の情報を活用する手法を提案することにより, 報告品質の向上を図る。
第2に、従来のAI拡張システムとAI拡張システムの両方で、開発者ワークフローを実証的に特徴付けます。
第3に、ML、DL、LLMベースのアプローチを通じて、バギーUIのローカライゼーションやソリューション識別を含む認知的な解決タスクを自動化する。
私たちの研究は、AIによる問題解決を進めるための経験的な洞察、実践的なツール、自動化された方法を提供し、より保守性が高く高品質なソフトウェアシステムをサポートします。
関連論文リスト
- An Agentic Framework with LLMs for Solving Complex Vehicle Routing Problems [66.60904891478687]
複雑な車両ルーティング問題を解決するために,LLM (AFL) を用いたエージェントフレームワークを提案する。
AFLは生の入力から知識を直接抽出し、自己完結型コード生成を可能にする。
AFLは、コード信頼性とソリューション実現性の両方において、既存のLCMベースのベースラインを大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2025-10-19T03:59:25Z) - A Comprehensive Survey on Benchmarks and Solutions in Software Engineering of LLM-Empowered Agentic System [56.40989626804489]
この調査は、Large Language Modelsを使ったソフトウェアエンジニアリングに関する、最初の総合的な分析を提供する。
本稿では,150以上の最近の論文をレビューし,(1)素早い,微調整,エージェントベースのパラダイムに分類した解法,(2)コード生成,翻訳,修復などのタスクを含むベンチマークという2つの重要な側面に沿った分類法を提案する。
論文 参考訳(メタデータ) (2025-10-10T06:56:50Z) - AutoMind: Adaptive Knowledgeable Agent for Automated Data Science [70.33796196103499]
LLM(Large Language Model)エージェントは、現実世界のデータサイエンス問題に対処する大きな可能性を示している。
既存のフレームワークは、厳格で、事前定義された、柔軟性のないコーディング戦略に依存している。
適応的で知識のあるLLMエージェントフレームワークであるAutoMindを紹介する。
論文 参考訳(メタデータ) (2025-06-12T17:59:32Z) - An Empirical Exploration of ChatGPT's Ability to Support Problem Formulation Tasks for Mission Engineering and a Documentation of its Performance Variability [0.0]
本稿では,大規模言語モデル(LLM)の品質と整合性について考察する。
我々は、関連する参照問題、NASAの宇宙ミッション設計課題を特定し、ChatGPT-3.5のステークホルダ識別タスクの実行能力を文書化する。
LLMは人間の利害関係者の識別には有効であるが, 外部システムや環境要因の認識には不十分であることがわかった。
論文 参考訳(メタデータ) (2025-02-05T17:58:23Z) - Agentic AI-Driven Technical Troubleshooting for Enterprise Systems: A Novel Weighted Retrieval-Augmented Generation Paradigm [0.0]
本稿では,企業の技術的トラブルシューティングに適したRAG(Weighted Retrieval-Augmented Generation)フレームワーク上に構築されたエージェントAIソリューションを提案する。
製品マニュアル、内部知識ベース、FAQ、トラブルシューティングガイドなどの検索ソースを動的に重み付けすることで、最も関連性の高いデータを優先順位付けする。
大規模エンタープライズデータセットに関する予備評価では、トラブルシューティングの精度を改善し、解決時間を短縮し、さまざまな技術的課題に適応する上で、フレームワークの有効性が示されている。
論文 参考訳(メタデータ) (2024-12-16T17:32:38Z) - Agent-Driven Automatic Software Improvement [55.2480439325792]
本提案は,Large Language Models (LLMs) を利用したエージェントの展開に着目して,革新的なソリューションの探求を目的とする。
継続的学習と適応を可能にするエージェントの反復的性質は、コード生成における一般的な課題を克服するのに役立ちます。
我々は,これらのシステムにおける反復的なフィードバックを用いて,エージェントの基盤となるLLMをさらに微調整し,自動化されたソフトウェア改善のタスクに整合性を持たせることを目指している。
論文 参考訳(メタデータ) (2024-06-24T15:45:22Z) - Engineering an Intelligent Essay Scoring and Feedback System: An
Experience Report [1.5168188294440734]
専門的な採用支援サービスの顧客から提供されるエッセイの質を評価するための探索システムについて述べる。
オープンエンドの顧客提供のソーステキストがあいまいさとエラーのかなりの範囲を持っているため、問題領域は困難です。
また、専門的なビジネスドメイン知識をインテリジェントな処理システムに組み込む必要もあります。
論文 参考訳(メタデータ) (2021-03-25T03:46:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。