論文の概要: Computing Evolutionarily Stable Strategies in Imperfect-Information Games
- arxiv url: http://arxiv.org/abs/2512.10279v2
- Date: Fri, 12 Dec 2025 04:13:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-15 13:50:29.182185
- Title: Computing Evolutionarily Stable Strategies in Imperfect-Information Games
- Title(参考訳): 不完全な情報ゲームにおける進化的安定戦略
- Authors: Sam Ganzfried,
- Abstract要約: 本稿では,不完全情報の完全完全記憶ゲームにおいて,進化論的に安定な戦略(ESS)を計算するためのアルゴリズムを提案する。
本アルゴリズムは,マルチプレイヤーゲームに拡張可能なマルチプレイヤーゲームについて述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an algorithm for computing evolutionarily stable strategies (ESSs) in symmetric perfect-recall extensive-form games of imperfect information. Our main algorithm is for two-player games, and we describe how it can be extended to multiplayer games. The algorithm is sound and computes all ESSs in nondegenerate games and a subset of them in degenerate games which contain an infinite continuum of symmetric Nash equilibria. The algorithm is anytime and can be stopped early to find one or more ESSs. We experiment on an imperfect-information cancer signaling game as well as random games to demonstrate scalability.
- Abstract(参考訳): 本稿では,不完全情報の完全完全記憶ゲームにおいて,進化論的に安定な戦略(ESS)を計算するためのアルゴリズムを提案する。
本アルゴリズムは,マルチプレイヤーゲームに拡張可能なマルチプレイヤーゲームについて述べる。
このアルゴリズムは、非退化ゲームにおけるすべてのESSと、対称ナッシュ平衡の無限連続体を含む退化ゲームにおけるそれらのサブセットを音速で計算する。
アルゴリズムはいつでもあり、早期に停止して1つ以上のESSを見つけることができる。
我々は,不完全情報癌信号ゲームとランダムゲームを用いて,スケーラビリティを実証する実験を行った。
関連論文リスト
- Quadratic Programming Approach for Nash Equilibrium Computation in Multiplayer Imperfect-Information Games [0.0]
本稿では,非線形近似に基づく2次制約付きプログラムを解くマルチプレイヤー不完全情報ゲームにおける近似手法を提案する。
また,マルチプレイヤー戦略型ゲームにおけるナッシュ均衡の計算手法も提案した。
論文 参考訳(メタデータ) (2025-09-30T00:28:21Z) - Imperfect-Recall Games: Equilibrium Concepts and Their Complexity [74.01381499760288]
エージェントが以前保持していた情報を忘れたとき、不完全なリコールの下で最適な意思決定を行う。
不完全なリコールを伴う広範囲形式のゲームフレームワークにおいて、マルチプレイヤー設定における平衡を求める際の計算複雑性を解析する。
論文 参考訳(メタデータ) (2024-06-23T00:27:28Z) - Securing Equal Share: A Principled Approach for Learning Multiplayer Symmetric Games [21.168085154982712]
マルチプレイヤーゲームにおける平衡は、一意でも爆発的でもない。
本稿では,平等な共有という自然な目的に焦点をあてることで,これらの課題に対処するための最初の一歩を踏み出す。
我々は、様々な設定でほぼ同じシェアを確実に得る、非回帰学習にインスパイアされた、一連の効率的なアルゴリズムを設計する。
論文 参考訳(メタデータ) (2024-06-06T15:59:17Z) - Hardness of Independent Learning and Sparse Equilibrium Computation in
Markov Games [70.19141208203227]
マルコフゲームにおける分散型マルチエージェント強化学習の問題点を考察する。
我々は,全てのプレイヤーが独立に実行すると,一般のサムゲームにおいて,アルゴリズムが到達しないことを示す。
我々は,全てのエージェントが集中型アルゴリズムによって制御されるような,一見簡単な設定であっても,下位境界が保持されていることを示す。
論文 参考訳(メタデータ) (2023-03-22T03:28:12Z) - Abstracting Imperfect Information Away from Two-Player Zero-Sum Games [85.27865680662973]
Nayyar et al. (2013) は、プレイヤーがプレイ中にポリシーを公に発表することで、不完全な情報を共通のペイオフゲームから抽象化できることを示した。
この研究は、ある正規化された平衡が上記の非対応問題を持たないことを示している。
これらの正規化された平衡はナッシュ平衡に任意に近づくことができるので、この結果は2つのプレイヤーゼロサムゲームを解くための新たな視点への扉を開く。
論文 参考訳(メタデータ) (2023-01-22T16:54:06Z) - Learning in Multi-Player Stochastic Games [1.0878040851638]
有限ホライズン設定において、多くのプレイヤーとゲームにおける同時学習の問題を考える。
ゲームの典型的な対象解はナッシュ均衡であるが、これは多くのプレイヤーにとって難解である。
我々は異なるターゲットに目を向ける:全てのプレイヤーが使用するときの平衡を生成するアルゴリズム。
論文 参考訳(メタデータ) (2022-10-25T19:02:03Z) - Learning Correlated Equilibria in Mean-Field Games [62.14589406821103]
我々は平均場相関と粗相関平衡の概念を発展させる。
ゲームの構造に関する仮定を必要とせず,効率よくゲーム内で学習できることが示される。
論文 参考訳(メタデータ) (2022-08-22T08:31:46Z) - Computing Nash Equilibria in Multiplayer DAG-Structured Stochastic Games
with Persistent Imperfect Information [1.7132914341329848]
永続的不完全情報を持つマルチプレイヤー汎用ゲームにおいて,ナッシュ均衡を近似するアルゴリズムを提案する。
新たな手法を用いることで,本ゲームにおけるナッシュ均衡を近似した戦略をアルゴリズムで計算できることが証明できる。
論文 参考訳(メタデータ) (2020-10-26T19:27:26Z) - Algorithm for Computing Approximate Nash Equilibrium in Continuous Games
with Application to Continuous Blotto [1.7132914341329848]
連続ゲームにおけるナッシュ均衡戦略を近似する新しいアルゴリズムを提案する。
また,2プレイヤーゼロサムゲームに加えて,マルチプレイヤーゲームや不完全な情報を持つゲームにも適用できる。
論文 参考訳(メタデータ) (2020-06-12T19:53:18Z) - From Poincar\'e Recurrence to Convergence in Imperfect Information
Games: Finding Equilibrium via Regularization [49.368421783733815]
モノトーンゲームにおいて,報酬の適応が強い収束保証を与えることを示す。
また、この報酬適応手法を用いて、Nash平衡に正確に収束するアルゴリズムを構築する方法を示す。
論文 参考訳(メタデータ) (2020-02-19T21:36:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。