論文の概要: Exploring Topological Bias in Heterogeneous Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2512.11846v1
- Date: Thu, 04 Dec 2025 04:14:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-21 14:22:08.719607
- Title: Exploring Topological Bias in Heterogeneous Graph Neural Networks
- Title(参考訳): 不均一グラフニューラルネットワークにおけるトポロジカルバイアスの探索
- Authors: Yihan Zhang,
- Abstract要約: 不均一グラフニューラルネットワーク(HGNN)は、グラフ構造化データを処理する能力によって特徴付けられる。
半教師付き学習ではラベルの広さのため、特定のノードに偏りのある性能を示すことが判明した。
本稿では,ノードのマッピング値の差分に基づくデバイアス構造を提案し,それと元のグラフ構造を対比学習に用いる。
- 参考スコア(独自算出の注目度): 7.802456101518216
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) are characterized by their capacity of processing graph-structured data. However, due to the sparsity of labels under semi-supervised learning, they have been found to exhibit biased performance on specific nodes. This kind of bias has been validated to correlate with topological structure and is considered as a bottleneck of GNNs' performance. Existing work focuses on the study of homogeneous GNNs and little attention has been given to topological bias in Heterogeneous Graph Neural Networks (HGNNs). In this work, firstly, in order to distinguish distinct meta relations, we apply meta-weighting to the adjacency matrix of a heterogeneous graph. Based on the modified adjacency matrix, we leverage PageRank along with the node label information to construct a projection. The constructed projection effectively maps nodes to values that strongly correlated with model performance when using datasets both with and without intra-type connections, which demonstrates the universal existence of topological bias in HGNNs. To handle this bias, we propose a debiasing structure based on the difference in the mapped values of nodes and use it along with the original graph structure for contrastive learning. Experiments on three public datasets verify the effectiveness of the proposed method in improving HGNNs' performance and debiasing.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、グラフ構造化データを処理する能力によって特徴付けられる。
しかし、半教師付き学習ではラベルの幅が広いため、特定のノードに偏りのある性能を示すことが判明した。
この種のバイアスは、トポロジカルな構造と相関し、GNNのパフォーマンスのボトルネックと見なされている。
既存の研究は同種GNNの研究に重点を置いており、HGNN(Heterogeneous Graph Neural Networks)のトポロジ的バイアスにはほとんど注目されていない。
この研究において、まず、異なるメタ関係を区別するために、異種グラフの隣接行列にメタ重み付けを適用する。
修正された隣接行列に基づいて、ノードラベル情報とともにPageRankを利用してプロジェクションを構築する。
構成されたプロジェクションは,HGNNにおけるトポロジ的バイアスの普遍的存在を示すため,モデル性能と強く相関する値にノードを効果的にマッピングする。
このバイアスに対処するため,ノードのマッピング値の差分に基づいてデバイアス構造を提案し,それと元のグラフ構造を用いてコントラスト学習を行う。
3つの公開データセットの実験により,提案手法の有効性が検証された。
関連論文リスト
- Learn from Heterophily: Heterophilous Information-enhanced Graph Neural Network [4.078409998614025]
論理的に異なるラベルを持つノードは意味論的意味に基づいて接続される傾向があるが、グラフニューラルネットワーク(GNN)は、しばしば最適以下の性能を示す。
ヘテロフィリーに固有の意味情報をグラフ学習において効果的に活用できることを示す。
ノード分布を利用して異種情報を統合する新しいグラフ構造を構築する革新的な手法であるHiGNNを提案する。
論文 参考訳(メタデータ) (2024-03-26T03:29:42Z) - Heterophily-Aware Graph Attention Network [42.640057865981156]
グラフニューラルネットワーク(GNN)はグラフ表現学習において顕著な成功を収めている。
既存のヘテロフィル性GNNは、各エッジのヘテロフィリのモデリングを無視する傾向にあり、これはヘテロフィリ問題に取り組む上でも不可欠である。
本稿では,局所分布を基礎となるヘテロフィリーとして完全に探索し,活用することで,新たなヘテロフィア対応グラフ注意ネットワーク(HA-GAT)を提案する。
論文 参考訳(メタデータ) (2023-02-07T03:21:55Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - High-Order Pooling for Graph Neural Networks with Tensor Decomposition [23.244580796300166]
グラフニューラルネットワーク(GNN)は、さまざまなグラフ構造化データモデリングの有効性と柔軟性から、注目を集めている。
本稿では,高次非線形ノード相互作用をモデル化するためにテンソル分解に依存する高表現性GNNアーキテクチャであるGraphized Neural Network (tGNN)を提案する。
論文 参考訳(メタデータ) (2022-05-24T01:12:54Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
不均一グラフニューラルネットワーク(HGNN)は異種グラフのモデリングと解析において非常に一般的な手法である。
我々は,ノード属性とグラフトポロジの各ガイダンスに関する2つの視点を取り入れた,新規で頑健なヘテロジニアスグラフコントラスト学習手法であるHGCLを初めて開発する。
この新しいアプローチでは,属性とトポロジに関連情報を別々にマイニングする手法として,異なるが最も適した属性とトポロジの融合機構を2つの視点に適用する。
論文 参考訳(メタデータ) (2022-04-30T12:57:02Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
典型的な好適なグラフでは、エッジを指向する可能性があり、エッジをそのまま扱うか、あるいは単純に非指向にするかは、GNNモデルの性能に大きな影響を与える。
そこで我々は,グラフの方向性を適応的に学習するモデルを開発し,ノード間の長距離相関を生かした。
論文 参考訳(メタデータ) (2021-11-19T08:54:21Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
本稿では,グラフ全体を部分的に観測されたマルコフ確率場としてモデル化するEPFGNN(Explicit Pairwise Factorized Graph Neural Network)を提案する。
出力-出力関係をモデル化するための明示的なペアワイズ要素を含み、入力-出力関係をモデル化するためにGNNバックボーンを使用する。
本研究では,グラフ上での半教師付きノード分類の性能を効果的に向上できることを示す。
論文 参考訳(メタデータ) (2021-07-27T19:47:53Z) - Higher-Order Attribute-Enhancing Heterogeneous Graph Neural Networks [67.25782890241496]
異種ネットワーク表現学習のための高次属性強化グラフニューラルネットワーク(HAEGNN)を提案する。
HAEGNNは、リッチで異質なセマンティクスのためのメタパスとメタグラフを同時に組み込む。
ノード分類、ノードクラスタリング、可視化における最先端の手法よりも優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2021-04-16T04:56:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。