論文の概要: A Neuro-Symbolic Framework for Accountability in Public-Sector AI
- arxiv url: http://arxiv.org/abs/2512.12109v2
- Date: Tue, 16 Dec 2025 22:41:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-18 15:03:26.986181
- Title: A Neuro-Symbolic Framework for Accountability in Public-Sector AI
- Title(参考訳): パブリックセクタAIにおけるアカウンタビリティのためのニューロシンボリックフレームワーク
- Authors: Allen Daniel Sunny,
- Abstract要約: この論文は、システム生成決定の正当化とCalFreshの法定制約を結びつける法的根拠のある説明可能性フレームワークを開発する。
事例評価は、法的に矛盾した説明を検出できるフレームワークの能力、侵害された適格性規則の強調、手続き的説明責任のサポートを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automated eligibility systems increasingly determine access to essential public benefits, but the explanations they generate often fail to reflect the legal rules that authorize those decisions. This thesis develops a legally grounded explainability framework that links system-generated decision justifications to the statutory constraints of CalFresh, California's Supplemental Nutrition Assistance Program. The framework combines a structured ontology of eligibility requirements derived from the state's Manual of Policies and Procedures (MPP), a rule extraction pipeline that expresses statutory logic in a verifiable formal representation, and a solver-based reasoning layer to evaluate whether the explanation aligns with governing law. Case evaluations demonstrate the framework's ability to detect legally inconsistent explanations, highlight violated eligibility rules, and support procedural accountability by making the basis of automated determinations traceable and contestable.
- Abstract(参考訳): 自動化された適格性システムは、必須の公共利益へのアクセスをますます決定するが、それらが生み出す説明は、これらの決定を認可する法的規則を反映しないことが多い。
この論文は、カリフォルニア州の補助栄養補助プログラムであるカルフレッシュの法定制約に、システム生成決定の正当化を結びつける法的根拠のある説明可能性フレームワークを開発する。
このフレームワークは、国家の政策・手続マニュアル(MPP)から導かれる、適格性要件の構造化オントロジーと、検証可能な形式表現で法論理を表現するルール抽出パイプラインと、説明が統治法と整合するかどうかを評価するためのソルバベースの推論層とを組み合わせる。
ケースアセスメントは、法的に矛盾した説明を検知し、侵害された適性規則を強調し、自動決定をトレース可能かつ競合可能とすることで手続き的説明責任を支援するフレームワークの能力を実証する。
関連論文リスト
- Soppia: A Structured Prompting Framework for the Proportional Assessment of Non-Pecuniary Damages in Personal Injury Cases [0.0]
本稿では,複雑な法的ルールをナビゲートする上で,法律専門家を支援するための構造的プロンプトフレームワークであるSoppiaを紹介する。
ブラジルのCLT (Art. 223-G) で確立された非経時的被害に対する12の基準を事例研究として、ソッピアがいかにニュアンス法的な命令を実用的でレプリカブルで透明な方法論に運用するかを実証した。
論文 参考訳(メタデータ) (2025-10-24T01:42:38Z) - Argumentation-Based Explainability for Legal AI: Comparative and Regulatory Perspectives [0.9668407688201359]
人工知能(AI)システムは、法的文脈においてますます多くデプロイされている。
いわゆる「ブラックボックス問題」は、自動意思決定の正当性を損なう。
XAIは透明性を高めるための様々な方法を提案している。
論文 参考訳(メタデータ) (2025-10-13T07:19:15Z) - Step-Aware Policy Optimization for Reasoning in Diffusion Large Language Models [57.42778606399764]
拡散言語モデル(dLLM)は、テキスト生成に有望で非自己回帰的なパラダイムを提供する。
現在の強化学習アプローチは、しばしばスパースで結果に基づく報酬に頼っている。
これは推論の自然な構造との根本的なミスマッチに由来すると我々は主張する。
論文 参考訳(メタデータ) (2025-10-02T00:34:15Z) - On Verifiable Legal Reasoning: A Multi-Agent Framework with Formalized Knowledge Representations [0.0]
本稿では,法的な推論を異なる知識獲得と応用段階に分解するモジュール型マルチエージェントフレームワークを提案する。
第一段階では、特殊エージェントは法的概念を抽出し、規則を形式化し、法令の検証可能な中間表現を作成する。
第2段階では、クエリを分析してケース事実をスキーマにマッピングし、論理的に関連する結論を導出するためのシンボリック推論を実行し、最終的な回答を生成するという3つのステップを通じて、この知識を特定のケースに適用する。
論文 参考訳(メタデータ) (2025-08-31T06:03:00Z) - Judicial Requirements for Generative AI in Legal Reasoning [0.0]
大規模言語モデル(LLM)はプロのドメインに統合されているが、法律のような高度な分野における制限は理解されていない。
本稿では、AIシステムが司法判断における信頼性の高い推論ツールとして機能しなければならない中核機能について述べる。
論文 参考訳(メタデータ) (2025-08-26T09:56:26Z) - Explainable AI Systems Must Be Contestable: Here's How to Make It Happen [2.5875936082584623]
本稿では、説明可能なAIにおける競合性の最初の厳密な形式的定義について述べる。
我々は、ヒューマン中心のインターフェース、技術プロセス、組織アーキテクチャにまたがる、設計やポストホックメカニズムのモジュール化されたフレームワークを紹介します。
私たちの作業は実践者に、真のリコースと説明責任をAIシステムに組み込むためのツールを提供しています。
論文 参考訳(メタデータ) (2025-06-02T13:32:05Z) - Watermarking Without Standards Is Not AI Governance [46.71493672772134]
現在の実装は、効果的な監視を提供するのではなく、象徴的なコンプライアンスとして機能するリスクがある、と私たちは主張する。
本稿では,技術標準,監査インフラストラクチャ,実施機構を含む3層フレームワークを提案する。
論文 参考訳(メタデータ) (2025-05-27T18:10:04Z) - A Law Reasoning Benchmark for LLM with Tree-Organized Structures including Factum Probandum, Evidence and Experiences [76.73731245899454]
本稿では,階層的なファクトラム,証拠,暗黙的な経験に富む透明な法理推論スキーマを提案する。
このスキーマにインスパイアされた課題は、テキストのケース記述を取り込み、最終決定を正当化する階層構造を出力する。
このベンチマークは、Intelligent Courtにおける透明で説明可能なAI支援法推論の道を開く」。
論文 参考訳(メタデータ) (2025-03-02T10:26:54Z) - Few-shot Policy (de)composition in Conversational Question Answering [54.259440408606515]
本稿では,大規模言語モデル(LLM)を用いて数ショット設定でポリシーコンプライアンスを検出するニューラルシンボリックフレームワークを提案する。
提案手法は,回答すべきサブクエストを抽出し,文脈情報から真理値を割り当て,与えられたポリシーから論理文の集合を明示的に生成することで,政策コンプライアンスに関する会話に対して健全な理由を示す。
本手法は,PCDおよび会話機械読解ベンチマークであるShARCに適用し,タスク固有の微調整を伴わずに競合性能を示す。
論文 参考訳(メタデータ) (2025-01-20T08:40:15Z) - RIRAG: Regulatory Information Retrieval and Answer Generation [51.998738311700095]
本稿では,質問を自動生成し,関連する規制通路と組み合わせる,問合せペアを生成するタスクを紹介する。
我々は、Abu Dhabi Global Markets (ADGM) の財務規制文書から得られた27,869の質問を含むObliQAデータセットを作成する。
本稿では,RIRAG(Regulation Information Retrieval and Answer Generation)システムをベースラインとして設計し,新しい評価基準であるRePASを用いて評価する。
論文 参考訳(メタデータ) (2024-09-09T14:44:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。