論文の概要: Hellinger loss function for Generative Adversarial Networks
- arxiv url: http://arxiv.org/abs/2512.12267v1
- Date: Sat, 13 Dec 2025 10:18:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-16 17:54:56.190454
- Title: Hellinger loss function for Generative Adversarial Networks
- Title(参考訳): ジェネレーティブ・ディバイザ・ネットワークのためのヘリンジャー損失関数
- Authors: Giovanni Saraceno, Anand N. Vidyashankar, Claudio Agostinelli,
- Abstract要約: GAN(Generative Adversarial Networks)の学習のためのHellinger型損失関数を提案する。
ヘリンガー距離の有界性、対称性、ロバスト性により動機付けられ、一般パラメトリックフレームワーク内の統計的性質を研究する。
以上の結果より,データ汚染量の増加により,両者の損失が推定精度とロバスト性を向上させることが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We propose Hellinger-type loss functions for training Generative Adversarial Networks (GANs), motivated by the boundedness, symmetry, and robustness properties of the Hellinger distance. We define an adversarial objective based on this divergence and study its statistical properties within a general parametric framework. We establish the existence, uniqueness, consistency, and joint asymptotic normality of the estimators obtained from the adversarial training procedure. In particular, we analyze the joint estimation of both generator and discriminator parameters, offering a comprehensive asymptotic characterization of the resulting estimators. We introduce two implementations of the Hellinger-type loss and we evaluate their empirical behavior in comparison with the classic (Maximum Likelihood-type) GAN loss. Through a controlled simulation study, we demonstrate that both proposed losses yield improved estimation accuracy and robustness under increasing levels of data contamination.
- Abstract(参考訳): 本稿では,Hellinger距離の有界性,対称性,ロバスト性によって動機付けられたGAN(Generative Adversarial Networks)の学習のためのHellinger型損失関数を提案する。
我々は,この分散に基づく敵の目的を定義し,その統計特性を一般パラメトリック・フレームワーク内で研究する。
逆行訓練により得られた推定器の存在, 特異性, 一貫性, および共同漸近正規性を確立した。
特に, ジェネレータと判別器パラメータの同時推定を解析し, 得られた推定器の漸近特性を包括的に解析する。
我々は,Hellinger型損失の2つの実装を導入し,その経験的挙動を古典的(最大様相型)GAN型損失と比較した。
制御されたシミュレーション研究により, 両者の損失がデータ汚染量の増加による推定精度およびロバスト性の向上を実証した。
関連論文リスト
- Penalized Empirical Likelihood for Doubly Robust Causal Inference under Contamination in High Dimensions [0.720409153108429]
低サンプルサイズ方程式における平均処理効果を2倍頑健に推定する手法を提案する。
提案した信頼区間は, 競合する推定値と比較して効率がよいことを示す。
論文 参考訳(メタデータ) (2025-07-23T11:58:54Z) - Wasserstein Distributionally Robust Nonparametric Regression [9.65010022854885]
本稿では、ワッサーシュタイン分布性非パラメトリック推定器の一般化特性について検討する。
我々は,過度の局地的最悪のリスクに対して,非漸近的エラー境界を確立する。
提案した推定器のロバスト性はシミュレーション研究を通じて評価し,MNISTデータセットへの適用例を示した。
論文 参考訳(メタデータ) (2025-05-12T18:07:37Z) - Semiparametric conformal prediction [79.6147286161434]
ベクトル値の非整合性スコアの結合相関構造を考慮した共形予測セットを構築する。
スコアの累積分布関数(CDF)を柔軟に推定する。
提案手法は,現実の回帰問題に対して,所望のカバレッジと競争効率をもたらす。
論文 参考訳(メタデータ) (2024-11-04T14:29:02Z) - Flexible Nonparametric Inference for Causal Effects under the Front-Door Model [2.6900047294457683]
本研究では, 平均治療効果, 平均治療効果の両面から, 新規な1段階, 目標最小損失ベース推定装置を開発した。
我々の推定器は観測されたデータ分布のパラメータ化に基づいて構築され、メディエータ密度を完全に回避するアプローチを含む。
因果効果推定器の効率を向上させるためにこれらの制約をどのように活用できるかを示す。
論文 参考訳(メタデータ) (2023-12-15T22:04:53Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
多重モード回帰は非定常過程の予測や分布の複雑な混合において重要である。
構造的放射基底関数ネットワークは回帰問題に対する複数の仮説予測器のアンサンブルとして提示される。
この構造モデルにより, このテッセルレーションを効率よく補間し, 複数の仮説対象分布を近似することが可能であることが証明された。
論文 参考訳(メタデータ) (2023-09-02T01:27:53Z) - Identification and multiply robust estimation in causal mediation analysis across principal strata [7.801213477601286]
治療後イベントの存在下での因果仲裁の評価について検討する。
本研究では,各媒介推定値に対する効率的な影響関数を導出する。
論文 参考訳(メタデータ) (2023-04-20T00:39:20Z) - Robust Estimation for Nonparametric Families via Generative Adversarial
Networks [92.64483100338724]
我々は,高次元ロバストな統計問題を解くためにGAN(Generative Adversarial Networks)を設計するためのフレームワークを提供する。
我々の研究は、これらをロバスト平均推定、第二モーメント推定、ロバスト線形回帰に拡張する。
技術面では、提案したGAN損失は、スムーズで一般化されたコルモゴロフ-スミルノフ距離と見なすことができる。
論文 参考訳(メタデータ) (2022-02-02T20:11:33Z) - Shaping Deep Feature Space towards Gaussian Mixture for Visual
Classification [74.48695037007306]
視覚分類のためのディープニューラルネットワークのためのガウス混合損失関数(GM)を提案する。
分類マージンと可能性正規化により、GM損失は高い分類性能と特徴分布の正確なモデリングの両方を促進する。
提案したモデルは、追加のトレーニング可能なパラメータを使わずに、簡単かつ効率的に実装できる。
論文 参考訳(メタデータ) (2020-11-18T03:32:27Z) - Causal Inference of General Treatment Effects using Neural Networks with
A Diverging Number of Confounders [12.105996764226227]
非確立状態下では、共同設立者に対する調整は、非パラメトリックな共同設立者に対して結果や治療に関連する迷惑関数を見積もる必要がある。
本稿では,ニューラルネットワーク(ANN)を用いた一般的な治療効果の効率的な評価のための一般化された最適化手法について考察する。
論文 参考訳(メタデータ) (2020-09-15T13:07:24Z) - Nonparametric Score Estimators [49.42469547970041]
未知分布によって生成されたサンプルの集合からスコアを推定することは確率モデルの推論と学習における基本的なタスクである。
正規化非パラメトリック回帰の枠組みの下で、これらの推定器の統一的なビューを提供する。
カールフリーカーネルと高速収束による計算効果を享受する反復正規化に基づくスコア推定器を提案する。
論文 参考訳(メタデータ) (2020-05-20T15:01:03Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
より優れた統計特性を得るために、二重ローバストなクロスフィット推定器が提案されている。
平均因果効果(ACE)に対する複数の推定器の性能評価のためのシミュレーション研究を行った。
機械学習で使用する場合、二重確率のクロスフィット推定器は、バイアス、分散、信頼区間のカバレッジで他のすべての推定器よりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-04-21T23:09:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。