論文の概要: GRC-Net: Gram Residual Co-attention Net for epilepsy prediction
- arxiv url: http://arxiv.org/abs/2512.12273v1
- Date: Sat, 13 Dec 2025 10:29:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-16 17:54:56.194131
- Title: GRC-Net: Gram Residual Co-attention Net for epilepsy prediction
- Title(参考訳): GRC-Net: てんかん予測のためのグラム残留コアテンションネット
- Authors: Bihao You, Jiping Cui,
- Abstract要約: 我々は,信号を3次元表現に変換するためにGram Matrix法を採用した。
脳波データ中の局所的信号と大域的信号の非均衡を観測した。
BONNデータセットの実験では、最も難しい5クラス分類タスクにおいて、GRC-Netは93.66%の精度を達成した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prediction of epilepsy based on electroencephalogram (EEG) signals is a rapidly evolving field. Previous studies have traditionally applied 1D processing to the entire EEG signal. However, we have adopted the Gram Matrix method to transform the signals into a 3D representation, enabling modeling of signal relationships across dimensions while preserving the temporal dependencies of the one-dimensional signals. Additionally, we observed an imbalance between local and global signals within the EEG data. Therefore, we introduced multi-level feature extraction, utilizing coattention for capturing global signal characteristics and an inception structure for processing local signals, achieving multi-granular feature extraction. Our experiments on the BONN dataset demonstrate that for the most challenging five-class classification task, GRC-Net achieved an accuracy of 93.66%, outperforming existing methods.
- Abstract(参考訳): 脳波信号に基づくてんかんの予測は急速に進展する分野である。
これまでの研究では、脳波信号全体に1D処理を適用してきた。
しかし,1次元信号の時間的依存性を保ちながら,信号間の信号関係のモデル化を可能にするため,Gram Matrix法を採用した。
また,脳波データ内の局所信号と大域信号の非バランスも観察した。
そこで我々は,マルチレベル特徴抽出を導入し,大域的な信号特性を捉え,局所的な信号処理の開始構造を利用して,多粒性特徴抽出を実現した。
BONNデータセットの実験では、最も難しい5クラス分類タスクにおいて、GRC-Netは93.66%の精度を達成し、既存の手法を上回りました。
関連論文リスト
- CEReBrO: Compact Encoder for Representations of Brain Oscillations Using Efficient Alternating Attention [46.47343031985037]
交互注意(CEReBrO)を用いた脳振動の表現のための圧縮法について紹介する。
トークン化方式は、チャネルごとのパッチで脳波信号を表現します。
本研究では,チャネル内時間的ダイナミックスとチャネル間空間的相関を共同でモデル化し,通常の自己アテンションに比べて6倍少ないメモリで2倍の速度向上を実現するための注意機構を提案する。
論文 参考訳(メタデータ) (2025-01-18T21:44:38Z) - CognitionCapturer: Decoding Visual Stimuli From Human EEG Signal With Multimodal Information [61.1904164368732]
脳波信号の表現にマルチモーダルデータを完全に活用する統合フレームワークであるCognitionCapturerを提案する。
具体的には、CognitionCapturerは、各モダリティに対してモダリティエキスパートを訓練し、EEGモダリティからモダリティ情報を抽出する。
このフレームワークは生成モデルの微調整を一切必要とせず、より多くのモダリティを組み込むように拡張することができる。
論文 参考訳(メタデータ) (2024-12-13T16:27:54Z) - Early warning indicators via latent stochastic dynamical systems [0.0]
我々は、低次元多様体の潜在進化力学を捉える異方性拡散写像を開発する。
3つの効果的な警告信号は、潜時座標と潜時力学系によって導出される。
我々の早期警戒指標は状態遷移中の先端を検出することができることがわかった。
論文 参考訳(メタデータ) (2023-09-07T16:55:33Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
AAD(Auditory Attention Detection)は、マルチスピーカー環境で脳信号からターゲット話者を検出することを目的としている。
現在のアプローチは主に、画像のようなユークリッドデータを処理するために設計された従来の畳み込みニューラルネットワークに依存している。
本稿では、入力として音声刺激を必要としないAADのための動的グラフ自己蒸留(DGSD)手法を提案する。
論文 参考訳(メタデータ) (2023-09-07T13:43:46Z) - Time-to-Green predictions for fully-actuated signal control systems with
supervised learning [56.66331540599836]
本稿では,集約信号とループ検出データを用いた時系列予測フレームワークを提案する。
我々は、最先端の機械学習モデルを用いて、将来の信号位相の持続時間を予測する。
スイスのチューリッヒの信号制御システムから得られた経験的データに基づいて、機械学習モデルが従来の予測手法より優れていることを示す。
論文 参考訳(メタデータ) (2022-08-24T07:50:43Z) - EEG multipurpose eye blink detector using convolutional neural network [0.0]
眼球運動によって放射される電気信号は、センサーに近接する脳波信号に非常に強いアーチファクトを生じる。
本研究の目的は,CNN(contrivialal neural network)を用いた脳波信号の瞬き検出と除去のための信頼性とユーザ独立アルゴリズムを作成することである。
論文 参考訳(メタデータ) (2021-07-29T03:34:42Z) - Embedding Signals on Knowledge Graphs with Unbalanced Diffusion Earth
Mover's Distance [63.203951161394265]
現代の機械学習では、多くの領域における観測間の相互作用や類似性によって生じる大きなグラフに遭遇することが一般的である。
本研究では,地球移動器距離(EMD)と測地コストを基礎となるグラフ上で比較し,グラフ信号のデータセットを整理する。
いずれの場合も,UDEMDをベースとした埋め込みは,他の手法と比較して高精度な距離を求めることができる。
論文 参考訳(メタデータ) (2021-07-26T17:19:02Z) - A Hierarchical Graph Signal Processing Approach to Inference from
Spatiotemporal Signals [14.416786768268233]
グラフ信号処理(GSP)の新興領域を動機として,信号から推論を行う新しい手法を提案する。
本稿では,階層的特徴抽出手法の開発に活用する。
Kアグル発作検出コンテストの頭蓋内脳波(iEEG)データセットについて検討した。
論文 参考訳(メタデータ) (2020-10-25T17:08:13Z) - Electroencephalography signal processing based on textural features for
monitoring the driver's state by a Brain-Computer Interface [3.613072342189595]
仮想脳-コンピュータインタフェース(BCI)システムにおいて,運転者の警戒度を推定する指標としてテキスト処理手法を検討する。
提案手法の新規性は、前処理された脳波データからの特徴抽出に1次元局所バイナリパターン (1D-LBP) アルゴリズムを用いることに依存する。
分析の結果,1D-LBPの採用により性能が大幅に向上したことが明らかとなった。
論文 参考訳(メタデータ) (2020-10-13T14:16:00Z) - GCNs-Net: A Graph Convolutional Neural Network Approach for Decoding
Time-resolved EEG Motor Imagery Signals [8.19994663278877]
グラフ畳み込みニューラルネットワーク(GCN)に基づく新しいディープラーニングフレームワークを提案し,生の脳波信号の復号性能を向上させる。
導入されたアプローチは、パーソナライズされた予測とグループ的な予測の両方に収束することが示されている。
論文 参考訳(メタデータ) (2020-06-16T04:57:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。