論文の概要: POLAR: A Portrait OLAT Dataset and Generative Framework for Illumination-Aware Face Modeling
- arxiv url: http://arxiv.org/abs/2512.13192v2
- Date: Tue, 16 Dec 2025 03:46:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-17 14:48:05.968999
- Title: POLAR: A Portrait OLAT Dataset and Generative Framework for Illumination-Aware Face Modeling
- Title(参考訳): POLAR: 照明認識顔モデリングのためのポートレートOLATデータセットと生成フレームワーク
- Authors: Zhuo Chen, Chengqun Yang, Zhuo Su, Zheng Lv, Jingnan Gao, Xiaoyuan Zhang, Xiaokang Yang, Yichao Yan,
- Abstract要約: 顔のリライティングは、アイデンティティと幾何学を保ちながら、新しい照明の下でリアルな肖像画を合成することを目的としている。
大規模かつ物理的に校正されたOne-Light-at-a-TimeデータセットであるPOLARを紹介した。
フローベース生成モデル POLARNet を開発した。これは1つのポートレートから光ごとのOLAT応答を予測し、顔認証を保ちながら細粒度で方向対応の照明効果を捉える。
- 参考スコア(独自算出の注目度): 51.7495375918484
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Face relighting aims to synthesize realistic portraits under novel illumination while preserving identity and geometry. However, progress remains constrained by the limited availability of large-scale, physically consistent illumination data. To address this, we introduce POLAR, a large-scale and physically calibrated One-Light-at-a-Time (OLAT) dataset containing over 200 subjects captured under 156 lighting directions, multiple views, and diverse expressions. Building upon POLAR, we develop a flow-based generative model POLARNet that predicts per-light OLAT responses from a single portrait, capturing fine-grained and direction-aware illumination effects while preserving facial identity. Unlike diffusion or background-conditioned methods that rely on statistical or contextual cues, our formulation models illumination as a continuous, physically interpretable transformation between lighting states, enabling scalable and controllable relighting. Together, POLAR and POLARNet form a unified illumination learning framework that links real data, generative synthesis, and physically grounded relighting, establishing a self-sustaining "chicken-and-egg" cycle for scalable and reproducible portrait illumination. Our project page: https://rex0191.github.io/POLAR/.
- Abstract(参考訳): 顔のリライティングは、アイデンティティと幾何学を保ちながら、新しい照明の下でリアルな肖像画を合成することを目的としている。
しかし、大規模で物理的に一貫した照明データの可用性の制限により、進歩は依然として制限されている。
これを解決するために,大規模かつ物理的に校正されたワンライト・アット・ア・タイム(OLAT)データセットであるPOLARを紹介した。
POLAR上に構築したフローベース生成モデルPOLARNetは,1つのポートレートから光ごとのOLAT応答を予測し,顔認証を保ちながら微細で方向対応の照明効果を捉える。
統計的あるいは文脈的な手がかりに依存する拡散や背景条件の手法とは異なり、我々の定式化は照明状態間の連続的、物理的に解釈可能な変換として照明をモデル化し、スケーラブルで制御可能な照明を可能にする。
POLARとPOLARNetは共に、実際のデータ、生成合成、物理的に接地されたリライティングをリンクする統合照明学習フレームワークを形成し、スケーラブルで再現可能なポートレート照明のための自給自足型の"チキン・アンド・エッグ"サイクルを確立した。
プロジェクトページ:https://rex0191.github.io/POLAR/。
関連論文リスト
- Light-X: Generative 4D Video Rendering with Camera and Illumination Control [52.87059646145144]
Light-Xは、視点制御と照明制御の両方でモノクロビデオから制御可能なレンダリングを可能にする、ビデオ生成フレームワークである。
マルチビューとマルチイルミネーションのペアビデオの欠如に対処するために,逆マッピングを備えた劣化ベースのパイプラインであるLight-Synを導入する。
論文 参考訳(メタデータ) (2025-12-04T18:59:57Z) - DifFRelight: Diffusion-Based Facial Performance Relighting [12.909429637057343]
拡散に基づく画像から画像への変換を用いた,自由視点顔の表情のリライティングのための新しいフレームワークを提案する。
我々は、正確な照明制御のための拡散モデルを訓練し、フラットライト入力からの顔画像の高忠実度化を可能にする。
このモデルは、目の反射、地表面散乱、自影、半透明といった複雑な照明効果を正確に再現する。
論文 参考訳(メタデータ) (2024-10-10T17:56:44Z) - LightIt: Illumination Modeling and Control for Diffusion Models [61.80461416451116]
我々は、画像生成のための明示的な照明制御方法であるLightItを紹介する。
最近の生成法では照明制御が欠如しており、画像生成の多くの芸術的側面に不可欠である。
本手法は、制御可能で一貫した照明による画像生成を可能にする最初の方法である。
論文 参考訳(メタデータ) (2024-03-15T18:26:33Z) - URHand: Universal Relightable Hands [64.25893653236912]
URHandは、視点、ポーズ、イルミネーション、アイデンティティを一般化する最初の普遍的照らし手モデルである。
本モデルでは,携帯電話で撮影した画像によるパーソナライズが可能であり,新たな照明下でのフォトリアリスティックなレンダリングが可能である。
論文 参考訳(メタデータ) (2024-01-10T18:59:51Z) - Relightable Neural Actor with Intrinsic Decomposition and Pose Control [80.06094206522668]
提案するRelightable Neural Actorは、ポーズ駆動型ニューラルヒューマンモデルを学ぶための新しいビデオベース手法である。
トレーニングのためには、既知のが静的な照明条件下での人間のマルチビュー記録のみを必要とする。
実世界のシナリオにおける我々のアプローチを評価するため、屋内と屋外の異なる光条件下で記録された4つのアイデンティティを持つ新しいデータセットを収集した。
論文 参考訳(メタデータ) (2023-12-18T14:30:13Z) - Controllable Light Diffusion for Portraits [8.931046902694984]
ポートレートの照明を改善する新しい方法である光拡散を導入する。
プロの写真家のディフューザーとスクリムにインスパイアされたこの手法は、1枚のポートレート写真のみの照明を柔らかくする。
論文 参考訳(メタデータ) (2023-05-08T14:46:28Z) - EverLight: Indoor-Outdoor Editable HDR Lighting Estimation [9.443561684223514]
本稿では、パラメトリック光モデルと360degパノラマを組み合わせ、レンダリングエンジンでHDRIとして使用できる手法を提案する。
我々の表現では、ユーザは光の方向、強度、数などを簡単に編集してシェーディングに影響を与えながら、リッチで複雑なリフレクションを提供しながら、編集とシームレスにブレンドすることができる。
論文 参考訳(メタデータ) (2023-04-26T00:20:59Z) - Neural Video Portrait Relighting in Real-time via Consistency Modeling [41.04622998356025]
本稿では,リアルタイム,高品質,コヒーレントな映像ポートレートリライティングのためのニューラルアプローチを提案する。
エンコーダデコーダアーキテクチャにおけるハイブリッド構造と照明非絡み合いを提案する。
また,実世界における自然ポートレート光操作の照明一貫性と突然変異をモデル化する照明サンプリング戦略を提案する。
論文 参考訳(メタデータ) (2021-04-01T14:13:28Z) - GMLight: Lighting Estimation via Geometric Distribution Approximation [86.95367898017358]
本稿では,効率的な照明推定のための回帰ネットワークと生成プロジェクタを用いた照明推定フレームワークを提案する。
幾何学的な光の分布、光強度、周囲条件、および補助深さの点から照明シーンをパラメータ化し、純粋な回帰タスクとして推定します。
推定照明パラメータを用いて、生成プロジェクタはパノラマ照明マップを現実的な外観と周波数で合成する。
論文 参考訳(メタデータ) (2021-02-20T03:31:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。