論文の概要: ModSSC: A Modular Framework for Semi-Supervised Classification on Heterogeneous Data
- arxiv url: http://arxiv.org/abs/2512.13228v1
- Date: Mon, 15 Dec 2025 11:43:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-16 17:54:56.642931
- Title: ModSSC: A Modular Framework for Semi-Supervised Classification on Heterogeneous Data
- Title(参考訳): ModSSC: 異種データの半スーパービジョン分類のためのモジュールフレームワーク
- Authors: Melvin Barbaux,
- Abstract要約: ModSSCは、インダクティブとトランスダクティブの半教師付き分類を統合するPythonフレームワークである。
ModSSCは、様々な古典的および最近のアルゴリズムを実装している。
小さなデータセットで軽量な古典的メソッドの両方をサポートする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semi-supervised classification leverages both labeled and unlabeled data to improve predictive performance, but existing software support is fragmented across methods and modalities. We introduce ModSSC, an open source Python framework that unifies inductive and transductive semi-supervised classification in a modular code base. ModSSC implements a broad range of classical and recent algorithms, provides loaders for tabular, image, text, audio and graph datasets, and exposes a single configuration interface for specifying datasets, models and evaluation protocols. It supports both lightweight classical methods on small datasets running on CPU and recent deep approaches that can exploit multiple GPUs within the same experimental framework. Experiments are described declaratively in YAML, which facilitates reproducing existing work and running large comparative studies. ModSSC 1.0.0 is released under the MIT license with extensive documentation and tests, and is available at https://github.com/ModSSC/ModSSC.
- Abstract(参考訳): 半教師付き分類はラベル付きデータとラベルなしデータの両方を活用して予測性能を向上させるが、既存のソフトウェアサポートはメソッドやモダリティによって断片化されている。
我々はModSSCを紹介した。ModSSCは、モジュールコードベースでインダクティブおよびトランスダクティブな半教師付き分類を統合するオープンソースのPythonフレームワークである。
ModSSCは、さまざまな古典的および最近のアルゴリズムを実装し、表、画像、テキスト、オーディオ、グラフデータセット用のローダを提供し、データセット、モデル、評価プロトコルを指定するための単一の設定インターフェースを公開する。
CPU上で動作する小さなデータセットの軽量な古典的メソッドと、同じ実験フレームワーク内で複数のGPUを活用可能な最近のディープアプローチの両方をサポートする。
実験はYAMLで宣言的に記述され、既存の作業を再現し、大規模な比較研究を行うのに役立つ。
ModSSC 1.0.0はMITライセンス下でリリースされ、ドキュメントとテストが広範囲に行われ、https://github.com/ModSSC/ModSSCで入手できる。
関連論文リスト
- OpenTAD: A Unified Framework and Comprehensive Study of Temporal Action Detection [86.30994231610651]
時間的行動検出(TAD)は、人間の行動を特定し、その時間的境界を動画内でローカライズすることを目的とした、基本的なビデオ理解タスクである。
我々は16種類のTADメソッドと9つの標準データセットをモジュール化したTADフレームワークであるtextbfOpenTADを提案する。
1つのモジュールを別の設計で置き換える、フィーチャベースのTADモデルをエンドツーエンドモードでトレーニングする、あるいは2つのモジュールを切り替える、という最小限の労力が必要になります。
論文 参考訳(メタデータ) (2025-02-27T18:32:27Z) - SWE-Fixer: Training Open-Source LLMs for Effective and Efficient GitHub Issue Resolution [56.9361004704428]
大規模言語モデル(LLM)は、様々な複雑なタスクにまたがる顕著な習熟度を示している。
SWE-Fixerは、GitHubの問題を効果的かつ効率的に解決するために設計された、新しいオープンソースフレームワークである。
我々は,SWE-Bench LiteとVerifiedベンチマークに対するアプローチを評価し,オープンソースモデル間の競合性能を実現する。
論文 参考訳(メタデータ) (2025-01-09T07:54:24Z) - MALPOLON: A Framework for Deep Species Distribution Modeling [3.1457219084519004]
MALPOLONは深部種分布モデル(deep-SDM)の訓練と推測を容易にすることを目的としている
Pythonで書かれ、PyTorchライブラリ上に構築されている。
このフレームワークはGitHubとPyPiでオープンソース化されている。
論文 参考訳(メタデータ) (2024-09-26T17:45:10Z) - MOKD: Cross-domain Finetuning for Few-shot Classification via Maximizing Optimized Kernel Dependence [97.93517982908007]
NCCは、ドメイン間数ショットの分類において、少数ショットの分類が可能なメートル法空間を構築するために表現を学ぶことを目的としている。
本稿では,異なるクラスから得られた2つの標本の NCC 学習表現に高い類似性があることを見出した。
ラベル付きデータによって示されるクラスタ構造にマッチするクラス固有の表現の集合を学習するために、最適化されたカーネル依存(MOKD)を最大化する二段階最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-29T05:59:52Z) - The LSCD Benchmark: a Testbed for Diachronic Word Meaning Tasks [4.475117725917231]
Lexical Semantic Change Detection (LSCD) は複雑な補題レベルのタスクである。
このリポジトリは、WiC、WSI、LSCDのモデル評価を可能にすることで、タスクのモジュラリティを反映している。
実装されたベンチマークを用いて、最近のモデルで多くの実験を行い、最先端のシステムを体系的に改善する。
論文 参考訳(メタデータ) (2024-03-29T22:11:54Z) - Rethinking Few-shot 3D Point Cloud Semantic Segmentation [62.80639841429669]
本稿では,FS-PCSによる3Dポイント・クラウドセマンティックセマンティックセグメンテーションについて再検討する。
我々は、最先端の2つの重要な問題、前景の漏洩とスパースポイントの分布に焦点をあてる。
これらの問題に対処するために、新しいベンチマークを構築するための標準化されたFS-PCS設定を導入する。
論文 参考訳(メタデータ) (2024-03-01T15:14:47Z) - Adaptive FSS: A Novel Few-Shot Segmentation Framework via Prototype
Enhancement [6.197356908000006]
Few-Shot (FSS) は、いくつかの注釈付き画像を用いて、新しいクラスセグメンテーションタスクを達成することを目的としている。
本稿では,既存のFSSモデルを新しいクラスに効率的に適応できるアダプタ機構,すなわちAdaptive FSSに基づく新しいフレームワークを提案する。
我々のアプローチは、エンコーダの層間にPAMを挿入するだけで、異なるバックボーンを持つ多様なFSSメソッドと互換性がある。
論文 参考訳(メタデータ) (2023-12-25T14:03:38Z) - VadCLIP: Adapting Vision-Language Models for Weakly Supervised Video
Anomaly Detection [58.47940430618352]
弱教師付きビデオ異常検出(WSVAD)のための新しいパラダイムであるVadCLIPを提案する。
VadCLIPは、CLIPの強度に関する視覚と言語の間のきめ細かい関連をフル活用している。
本稿では,VadCLIPが粗粒度および細粒度 WSVAD の両面において最高の性能を発揮することを示す。
論文 参考訳(メタデータ) (2023-08-22T14:58:36Z) - WRENCH: A Comprehensive Benchmark for Weak Supervision [66.82046201714766]
ベンチマークは、分類とシーケンスタグ付けのための22の異なる実世界のデータセットで構成されている。
ベンチマークプラットフォームとしての有効性を示すために、100以上のメソッドの変種に対して広範な比較を行うためにベンチマークを使用します。
論文 参考訳(メタデータ) (2021-09-23T13:47:16Z) - Small-Text: Active Learning for Text Classification in Python [23.87081733039124]
small-textはPython用の使いやすいアクティブラーニングライブラリである。
シングルラベルとマルチラベルのテキスト分類のためのプールベースのアクティブラーニングを提供する。
論文 参考訳(メタデータ) (2021-07-21T19:23:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。