論文の概要: Policy-Aligned Estimation of Conditional Average Treatment Effects
- arxiv url: http://arxiv.org/abs/2512.13400v1
- Date: Mon, 15 Dec 2025 14:51:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-16 17:54:56.706832
- Title: Policy-Aligned Estimation of Conditional Average Treatment Effects
- Title(参考訳): 条件付き平均処理効果の政策対応評価
- Authors: Artem Timoshenko, Caio Waisman,
- Abstract要約: マーケティング行動の条件付き平均治療効果(CATE)を推定する手法を提案する。
本手法は,標準利益問題における企業の目標機能を変更することにより,ほぼ最適のターゲティングポリシーを導出する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Firms often develop targeting policies to personalize marketing actions and improve incremental profits. Effective targeting depends on accurately separating customers with positive versus negative treatment effects. We propose an approach to estimate the conditional average treatment effects (CATEs) of marketing actions that aligns their estimation with the firm's profit objective. The method recognizes that, for many customers, treatment effects are so extreme that additional accuracy is unlikely to change the recommended actions. However, accuracy matters near the decision boundary, as small errors can alter targeting decisions. By modifying the firm's objective function in the standard profit maximization problem, our method yields a near-optimal targeting policy while simultaneously estimating CATEs. This introduces a new perspective on CATE estimation, reframing it as a problem of profit optimization rather than prediction accuracy. We establish the theoretical properties of the proposed method and demonstrate its performance and trade-offs using synthetic data.
- Abstract(参考訳): 企業はマーケティング行動のパーソナライズとインクリメンタルな利益向上のためのターゲティングポリシーを開発することが多い。
効果的なターゲティングは、正と負の処理効果で顧客を正確に分離することに依存する。
本稿では,企業利益目標に適合するマーケティング行動の条件平均処理効果(CATE)を推定する手法を提案する。
この手法は、多くの顧客にとって治療効果が極端であり、追加の精度が推奨行動を変える可能性が低いことを認識している。
しかし、小さなエラーがターゲット決定を変更する可能性があるため、精度は決定境界付近で重要である。
標準利益の最大化問題における企業の目標機能を変更することにより、CATEを同時に推定しながら、ほぼ最適ターゲットポリシーを導出する。
これはCATE推定の新しい視点を導入し、予測精度よりも利益最適化の問題として再検討する。
提案手法の理論的特性を確立し,その性能とトレードオフを合成データを用いて実証する。
関連論文リスト
- Treatment Effect Estimation for Optimal Decision-Making [65.30942348196443]
2段階CATE推定器を用いた最適意思決定について検討する。
本稿では,CATE推定誤差と判定性能のバランスをとるためにCATEを再ターゲットとした2段階学習目標を提案する。
論文 参考訳(メタデータ) (2025-05-19T13:24:57Z) - Metalearners for Ranking Treatment Effects [1.469168639465869]
政策の漸進的な利益曲線の下で、ランク付けの学習がいかにその領域を最大化できるかを示す。
政策の漸進的な利益曲線の下で、ランク付けの学習がいかにその領域を最大化できるかを示す。
論文 参考訳(メタデータ) (2024-05-03T15:31:18Z) - Reduced-Rank Multi-objective Policy Learning and Optimization [57.978477569678844]
実際には、因果研究者は先験を念頭において1つの結果を持っていない。
政府支援の社会福祉プログラムでは、政策立案者は貧困の多次元的性質を理解するために多くの成果を集めている。
本稿では、最適政策学習の文脈において、複数の結果に対するデータ駆動型次元性推論手法を提案する。
論文 参考訳(メタデータ) (2024-04-29T08:16:30Z) - Overcoming Reward Overoptimization via Adversarial Policy Optimization with Lightweight Uncertainty Estimation [46.61909578101735]
AdvPO(Adversarial Policy Optimization)は、人間からの強化学習における報酬過度最適化の問題に対する新しい解決策である。
本稿では,報酬モデルの最後の層埋め込みにのみ依存して,報酬の不確実性を定量化する軽量な手法を提案する。
論文 参考訳(メタデータ) (2024-03-08T09:20:12Z) - Off-Policy Evaluation for Large Action Spaces via Policy Convolution [60.6953713877886]
ポリシ・コンボリューション(Policy Convolution)のファミリーは、アクション内の潜在構造を使用して、ログとターゲットポリシを戦略的に畳み込みます。
合成およびベンチマークデータセットの実験では、PCを使用する場合の平均二乗誤差(MSE)が顕著に改善されている。
論文 参考訳(メタデータ) (2023-10-24T01:00:01Z) - A predict-and-optimize approach to profit-driven churn prevention [1.03590082373586]
我々は,留保キャンペーンを顧客をターゲットとするタスクを,後悔の最小化問題として検討する。
提案手法は予測最適化(PnO)フレームワークのガイドラインと一致し,勾配降下法を用いて効率的に解ける。
結果は,他の確立した戦略と比較して,平均利益率で最高の平均性能を達成するアプローチの有効性を裏付けるものである。
論文 参考訳(メタデータ) (2023-10-10T22:21:16Z) - Off-Policy Evaluation with Policy-Dependent Optimization Response [90.28758112893054]
我々は,テキスト政治に依存した線形最適化応答を用いた非政治評価のための新しいフレームワークを開発した。
摂動法による政策依存推定のための非バイアス推定器を構築する。
因果介入を最適化するための一般的なアルゴリズムを提供する。
論文 参考訳(メタデータ) (2022-02-25T20:25:37Z) - Variance-Aware Off-Policy Evaluation with Linear Function Approximation [85.75516599931632]
線形関数近似を用いた強化学習における非政治的評価問題について検討する。
本稿では,値関数の分散を推定し,フィルタQ-Iterationにおけるベルマン残差を再重み付けするアルゴリズムVA-OPEを提案する。
論文 参考訳(メタデータ) (2021-06-22T17:58:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。