論文の概要: Magic state cultivation on a superconducting quantum processor
- arxiv url: http://arxiv.org/abs/2512.13908v1
- Date: Mon, 15 Dec 2025 21:29:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-17 16:49:26.501106
- Title: Magic state cultivation on a superconducting quantum processor
- Title(参考訳): 超伝導量子プロセッサを用いたマジックステート培養
- Authors: Emma Rosenfeld, Craig Gidney, Gabrielle Roberts, Alexis Morvan, Nathan Lacroix, Dvir Kafri, Jeffrey Marshall, Ming Li, Volodymyr Sivak, Dmitry Abanin, Amira Abbas, Rajeev Acharya, Laleh Aghababaie Beni, Georg Aigeldinger, Ross Alcaraz, Sayra Alcaraz, Trond I. Andersen, Markus Ansmann, Frank Arute, Kunal Arya, Walt Askew, Nikita Astrakhantsev, Juan Atalaya, Ryan Babbush, Brian Ballard, Joseph C. Bardin, Hector Bates, Andreas Bengtsson, Majid Bigdeli Karimi, Alexander Bilmes, Simon Bilodeau, Felix Borjans, Jenna Bovaird, Dylan Bowers, Leon Brill, Peter Brooks, Michael Broughton, David A. Browne, Brett Buchea, Bob B. Buckley, Tim Burger, Brian Burkett, Nicholas Bushnell, Jamal Busnaina, Anthony Cabrera, Juan Campero, Hung-Shen Chang, Silas Chen, Zijun Chen, Ben Chiaro, Liang-Ying Chih, Agnetta Y. Cleland, Bryan Cochrane, Matt Cockrell, Josh Cogan, Paul Conner, Harold Cook, Rodrigo G. Cortiñas, William Courtney, Alexander L. Crook, Ben Curtin, Martin Damyanov, Sayan Das, Dripto M. Debroy, Sean Demura, Paul Donohoe, Ilya Drozdov, Andrew Dunsworth, Valerie Ehimhen, Alec Eickbusch, Aviv Moshe Elbag, Lior Ella, Mahmoud Elzouka, David Enriquez, Catherine Erickson, Lara Faoro, Vinicius S. Ferreira, Marcos Flores, Leslie Flores Burgos, Sam Fontes, Ebrahim Forati, Jeremiah Ford, Brooks Foxen, Masaya Fukami, Alan Wing Lun Fung, Lenny Fuste, Suhas Ganjam, Gonzalo Garcia, Christopher Garrick, Robert Gasca, Helge Gehring, Robert Geiger, Élie Genois, William Giang, Dar Gilboa, James E. Goeders, Edward C. Gonzales, Raja Gosula, Stijn J. de Graaf, Alejandro Grajales Dau, Dietrich Graumann, Joel Grebel, Alex Greene, Jonathan A. Gross, Jose Guerrero, Loïck Le Guevel, Tan Ha, Steve Habegger, Tanner Hadick, Ali Hadjikhani, Michael C. Hamilton, Monica Hansen, Matthew P. Harrigan, Sean D. Harrington, Jeanne Hartshorn, Stephen Heslin, Paula Heu, Oscar Higgott, Reno Hiltermann, Jeremy Hilton, Hsin-Yuan Huang, Mike Hucka, Christopher Hudspeth, Ashley Huff, William J. Huggins, Lev B. Ioffe, Evan Jeffrey, Shaun Jevons, Zhang Jiang, Xiaoxuan Jin, Chaitali Joshi, Pavol Juhas, Andreas Kabel, Hui Kang, Kiseo Kang, Amir H. Karamlou, Ryan Kaufman, Kostyantyn Kechedzhi, Tanuj Khattar, Mostafa Khezri, Seon Kim, Paul V. Klimov, Can M. Knaut, Bryce Kobrin, Alexander N. Korotkov, Fedor Kostritsa, John Mark Kreikebaum, Ryuho Kudo, Ben Kueffler, Arun Kumar, Vladislav D. Kurilovich, Vitali Kutsko, Tiano Lange-Dei, Brandon W. Langley, Pavel Laptev, Kim-Ming Lau, Emma Leavell, Justin Ledford, Joy Lee, Kenny Lee, Brian J. Lester, Wendy Leung, Lily Li, Wing Yan Li, Alexander T. Lill, William P. Livingston, Matthew T. Lloyd, Aditya Locharla, Laura De Lorenzo, Erik Lucero, Daniel Lundahl, Aaron Lunt, Sid Madhuk, Aniket Maiti, Ashley Maloney, Salvatore Mandrà, Leigh S. Martin, Orion Martin, Eric Mascot, Paul Masih Das, Dmitri Maslov, Melvin Mathews, Cameron Maxfield, Jarrod R. McClean, Matt McEwen, Seneca Meeks, Anthony Megrant, Kevin C. Miao, Zlatko K. Minev, Reza Molavi, Sebastian Molina, Shirin Montazeri, Charles Neill, Michael Newman, Anthony Nguyen, Murray Nguyen, Chia-Hung Ni, Murphy Yuezhen Niu, Nicholas Noll, Logan Oas, William D. Oliver, Raymond Orosco, Kristoffer Ottosson, Alice Pagano, Agustin Di Paolo, Sherman Peek, David Peterson, Alex Pizzuto, Elias Portoles, Rebecca Potter, Orion Pritchard, Michael Qian, Chris Quintana, Ganesh Ramachandran, Arpit Ranadive, Matthew J. Reagor, Rachel Resnick, David M. Rhodes, Daniel Riley, Roberto Rodriguez, Emma Ropes, Lucia B. De Rose, Eliott Rosenberg, Dario Rosenstock, Elizabeth Rossi, Pedram Roushan, David A. Rower, Robert Salazar, Kannan Sankaragomathi, Murat Can Sarihan, Max Schaefer, Sebastian Schroeder, Henry F. Schurkus, Aria Shahingohar, Michael J. Shearn, Aaron Shorter, Noah Shutty, Vladimir Shvarts, Spencer Small, W. Clarke Smith, David A. Sobel, Barrett Spells, Sofia Springer, George Sterling, Jordan Suchard, Aaron Szasz, Alexander Sztein, Madeline Taylor, Jothi Priyanka Thiruraman, Douglas Thor, Dogan Timucin, Eifu Tomita, Alfredo Torres, M. Mert Torunbalci, Hao Tran, Abeer Vaishnav, Justin Vargas, Sergey Vdovichev, Guifre Vidal, Benjamin Villalonga, Catherine Vollgraff Heidweiller, Meghan Voorhees, Steven Waltman, Jonathan Waltz, Shannon X. Wang, Danni Wang, Brayden Ware, James D. Watson, Yonghua Wei, Travis Weidel, Theodore White, Kristi Wong, Bryan W. K. Woo, Christopher J. Wood, Maddy Woodson, Cheng Xing, Z. Jamie Yao, Ping Yeh, Bicheng Ying, Juhwan Yoo, Noureldin Yosri, Elliot Young, Grayson Young, Adam Zalcman, Ran Zhang, Yaxing Zhang, Ningfeng Zhu, Nicholas Zobrist, Zhenjie Zou, Hartmut Neven, Sergio Boixo, Cody Jones, Julian Kelly, Alexandre Bourassa, Kevin J. Satzinger,
- Abstract要約: 超伝導量子プロセッサを用いたマジックステート培養の実験的検討を行った。
培養は40の係数で誤りを減らし、状態忠実度は0.9999(1)である。
- 参考スコア(独自算出の注目度): 108.15404500422814
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fault-tolerant quantum computing requires a universal gate set, but the necessary non-Clifford gates represent a significant resource cost for most quantum error correction architectures. Magic state cultivation offers an efficient alternative to resource-intensive distillation protocols; however, testing the proposal's assumptions represents a challenging departure from quantum memory experiments. We present an experimental study of magic state cultivation on a superconducting quantum processor. We implement cultivation, including code-switching into a surface code, and develop a fault-tolerant measurement protocol to bound the magic state fidelity. Cultivation reduces the error by a factor of 40, with a state fidelity of 0.9999(1) (retaining 8% of attempts). Our results experimentally establish magic state cultivation as a viable solution to one of quantum computing's most significant challenges.
- Abstract(参考訳): フォールトトレラントな量子コンピューティングは普遍ゲートセットを必要とするが、必要な非クリフォードゲートは、ほとんどの量子エラー補正アーキテクチャにおいて重要なリソースコストを示している。
マジックステート栽培は、資源集約型の蒸留プロトコルに代わる効率的な代替手段を提供するが、提案の仮定をテストすることは、量子メモリ実験から逸脱することの難しさを表している。
超伝導量子プロセッサを用いたマジックステート培養の実験的検討を行った。
我々は,表面コードへのコードスイッチングを含む培養を実装し,魔術状態の忠実さを束縛する耐故障性測定プロトコルを開発した。
培養は40の係数で誤りを減らし、状態忠実度は0.9999(1)(試行の8%を保持する)である。
量子コンピューティングの最も重要な課題の1つとして,マジックステート栽培が実現可能なソリューションとして実験的に確立されている。
関連論文リスト
- Reinforcement Learning Control of Quantum Error Correction [108.70420561323692]
量子コンピュータは、エラーから直接自己改善することを学び、決してコンピューティングを止めない。
この研究によって新しいパラダイムが実現された: 量子コンピュータは、そのエラーから直接自己改善を学び、決してコンピューティングを止めない。
論文 参考訳(メタデータ) (2025-11-11T17:32:25Z) - Experimental Demonstration of High-Fidelity Logical Magic States from Code Switching [0.0]
我々は、最先端の論理忠実度を持つ誤り訂正符号に符号化された論理マジック状態を作成する。
我々は、同じ量子プロセッサでマジック状態の2つのコピーを作成し、符号化されたマジック状態のサンプル効率証明のための論理ベル基底測定を行う。
高忠実度マジック状態は、既に実証されている耐故障性クリフォードゲート、状態準備、および2Dカラーコードの測定と組み合わせることができる。
論文 参考訳(メタデータ) (2025-06-17T04:08:41Z) - Unlocking early fault-tolerant quantum computing with mitigated magic dilution [41.95227943686519]
我々は小角回転の合成手法として緩和魔法希釈(MMD)を導入する。
この研究は、数百万の量子演算をサポートするデバイス上での早期フォールトトレラントなデモの道を開いた。
論文 参考訳(メタデータ) (2025-05-15T17:19:19Z) - Experimental Demonstration of Logical Magic State Distillation [62.77974948443222]
中性原子量子コンピュータ上での論理量子ビットによるマジック状態蒸留の実験的実現について述べる。
提案手法では,多くの論理量子ビット上で並列に量子演算を符号化し,実行するために動的に再構成可能なアーキテクチャを用いる。
論文 参考訳(メタデータ) (2024-12-19T18:38:46Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
量子ビット実装のマルチレベル構造から生じる計算部分空間から漏れること。
パラメトリックフラックス変調を用いた超伝導量子ビットの資源効率向上のためのユニバーサルリーク低減ユニットを提案する。
繰り返し重み付け安定化器測定におけるリーク低減ユニットの使用により,検出されたエラーの総数を,スケーラブルな方法で削減できることを実証した。
論文 参考訳(メタデータ) (2023-09-13T16:21:32Z) - Encoding a magic state with beyond break-even fidelity [1.449788466039287]
本稿では, 超電導量子ビットアレイ上に, 誤差補正を用いたマジック状態作成手法を提案し, 実装する。
我々の手法は、装置の個々の量子ビットを用いて準備できるものよりも優れたマジック状態を生成する。
我々のプロトタイプは、高忠実度マジック状態を生成するのに必要な物理量子ビットの数を削減できるので、将来的には貴重なものになるだろう。
論文 参考訳(メタデータ) (2023-05-23T01:19:53Z) - Scalable measures of magic resource for quantum computers [0.0]
量子ビット数に依存しないサンプリングコストを持つ純量子状態に対するマジックリソースの効率的な測定方法を提案する。
古典的にシミュレート可能な安定化状態から、IonQ量子コンピュータ上の難解な量子状態への遷移を示す。
論文 参考訳(メタデータ) (2022-04-21T12:50:47Z) - Efficient Experimental Verification of Quantum Gates with Local
Operations [0.0]
実用的なゲート不完全性に対して頑健な量子ゲート検証法(QGV)を提案する。
2ビット制御ノットゲートと3ビットトフォリゲートのQGVを実験的に実現した。
私たちの研究は、量子時代の大きな量子デバイスを検証する上で、次元的呪いの解決を約束します。
論文 参考訳(メタデータ) (2021-07-06T02:56:55Z) - Building a fault-tolerant quantum computer using concatenated cat codes [44.03171880260564]
本稿では,外部量子誤り訂正符号を用いた猫符号に基づくフォールトトレラント量子コンピュータを提案する。
我々は、外符号が繰り返し符号か薄い矩形曲面符号である場合、量子誤差補正を数値的にシミュレートする。
約1,000の超伝導回路部品で、フォールトトレラントな量子コンピュータを構築することができる。
論文 参考訳(メタデータ) (2020-12-07T23:22:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。