論文の概要: Establishing Stochastic Object Models from Noisy Data via Ambient Measurement-Integrated Diffusion
- arxiv url: http://arxiv.org/abs/2512.14187v1
- Date: Tue, 16 Dec 2025 08:33:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-17 16:49:26.638555
- Title: Establishing Stochastic Object Models from Noisy Data via Ambient Measurement-Integrated Diffusion
- Title(参考訳): 環境計測による雑音データからの確率的物体モデルの構築
- Authors: Jianwei Sun, Xiaoning Lei, Wenhao Cai, Xichen Xu, Yanshu Wang, Hu Gao,
- Abstract要約: AMIDはノイズ測定から直接クリーンSOMを確立する。
実際のCTおよびマンモグラフィーデータセットの実験では、AMIDは生成忠実度において既存の手法よりも優れていた。
- 参考スコア(独自算出の注目度): 5.400762197932078
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Task-based measures of image quality (IQ) are critical for evaluating medical imaging systems, which must account for randomness including anatomical variability. Stochastic object models (SOMs) provide a statistical description of such variability, but conventional mathematical SOMs fail to capture realistic anatomy, while data-driven approaches typically require clean data rarely available in clinical tasks. To address this challenge, we propose AMID, an unsupervised Ambient Measurement-Integrated Diffusion with noise decoupling, which establishes clean SOMs directly from noisy measurements. AMID introduces a measurement-integrated strategy aligning measurement noise with the diffusion trajectory, and explicitly models coupling between measurement and diffusion noise across steps, an ambient loss is thus designed base on it to learn clean SOMs. Experiments on real CT and mammography datasets show that AMID outperforms existing methods in generation fidelity and yields more reliable task-based IQ evaluation, demonstrating its potential for unsupervised medical imaging analysis.
- Abstract(参考訳): 画像品質のタスクベース尺度(IQ)は、医学的イメージングシステムを評価する上で重要であり、解剖学的変動を含むランダム性を考慮する必要がある。
確率的オブジェクトモデル(SOMs)はそのような変数の統計的記述を提供するが、従来の数学的SOMは現実的な解剖学を捉えない。
この課題に対処するために、ノイズデカップリングによる教師なしのアンビエント計測-独立拡散であるAMIDを提案し、ノイズ測定から直接クリーンなSOMを確立する。
AMIDは, 測定ノイズと拡散軌跡を整合させる計測積分戦略を導入し, 測定ノイズと拡散ノイズとの結合をステップ毎に明確にモデル化し, 環境損失をベースとして, クリーンなSOMを学習する。
実際のCTおよびマンモグラフィーデータセットの実験では、AMIDは既存の手法よりも忠実に生成し、より信頼性の高いタスクベースのIQ評価をもたらし、教師なしの医療画像解析の可能性を示している。
関連論文リスト
- Ambient Denoising Diffusion Generative Adversarial Networks for Establishing Stochastic Object Models from Noisy Image Data [4.069144210024564]
本稿では,ノイズの多い画像データから現実的なSOMを学習するための拡張DDGANアーキテクチャであるADDGANを提案する。
雑音の多い画像データから現実的なSOMを学習する能力を示す。
論文 参考訳(メタデータ) (2025-01-31T12:40:43Z) - AmbientCycleGAN for Establishing Interpretable Stochastic Object Models
Based on Mathematical Phantoms and Medical Imaging Measurements [4.573310303307945]
この研究はAmbientCycleGANと呼ばれる新しい手法を導入し、ノイズ測定データを用いて数学的SOMを現実的なSOMに変換する。
提案手法は,数理モデルと雑音測定データに基づいて安定にSOMを確立できることを実証した。
論文 参考訳(メタデータ) (2024-02-02T06:30:33Z) - SMRD: SURE-based Robust MRI Reconstruction with Diffusion Models [76.43625653814911]
拡散モデルは、高い試料品質のため、MRIの再生を加速するために人気を博している。
推論時に柔軟にフォワードモデルを組み込んだまま、効果的にリッチなデータプリエントとして機能することができる。
拡散モデル(SMRD)を用いたSUREに基づくMRI再構成を導入し,テスト時の堅牢性を向上する。
論文 参考訳(メタデータ) (2023-10-03T05:05:35Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
大腸内視鏡検査は臨床診断や治療に不可欠である。
注釈付きデータの不足は、既存の手法の有効性と一般化を制限する。
本稿では, 下流作業に有用な大腸内視鏡画像を生成するために, 適応Refinement Semantic Diffusion Model (ArSDM)を提案する。
論文 参考訳(メタデータ) (2023-09-03T07:55:46Z) - Simulation-based Inference for Cardiovascular Models [43.55219268578912]
シミュレーションに基づく推論を用いて、波形をプラプシブルな生理的パラメータにマッピングする逆問題を解決する。
臨床応用5種類のバイオマーカーのin-silico不確実性解析を行った。
我々はMIMIC-III波形データベースを用いて,ビビオとシリカのギャップについて検討した。
論文 参考訳(メタデータ) (2023-07-26T02:34:57Z) - Learning stochastic object models from medical imaging measurements by
use of advanced AmbientGANs [7.987904193401004]
GAN(Generative Adversarial Network)は、そのようなタスクの可能性を秘めている。
GAN(Generative Adversarial Network)のような深層生成ニューラルネットワークは、そのようなタスクの可能性を秘めている。
本研究では,現代進行的・多分解能的な訓練手法に適した改良型アンビエントGANトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2021-06-27T21:46:23Z) - Statistical control for spatio-temporal MEG/EEG source imaging with
desparsified multi-task Lasso [102.84915019938413]
脳磁図(MEG)や脳電図(EEG)のような非侵襲的手法は、非侵襲的手法を約束する。
ソースローカライゼーション(ソースイメージング)の問題は、しかしながら、高次元の統計的推測問題を引き起こす。
この問題に対処するために,分離されたマルチタスクラッソ(ecd-MTLasso)のアンサンブルを提案する。
論文 参考訳(メタデータ) (2020-09-29T21:17:16Z) - Progressively-Growing AmbientGANs For Learning Stochastic Object Models
From Imaging Measurements [14.501812971529137]
医療画像システムの客観的な最適化には、測定データ中のランダム性のすべての源をフルに評価する必要がある。
本稿では,オブジェクトのクラスにおける変数を記述するオブジェクトモデル(SOM)の確立を提案する。
医用イメージングシステムは、物体特性のノイズや間接的な表現を示す画像計測を記録しているため、画像化対象のモデルを構築するために直接GANを適用することはできない。
論文 参考訳(メタデータ) (2020-01-26T21:33:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。