論文の概要: Trunc-Opt vine building algorithms
- arxiv url: http://arxiv.org/abs/2512.14399v1
- Date: Tue, 16 Dec 2025 13:37:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-17 16:49:26.728209
- Title: Trunc-Opt vine building algorithms
- Title(参考訳): Trunc-Opt Vine構築アルゴリズム
- Authors: Dániel Pfeifer, Edith Alice Kovács,
- Abstract要約: 本報告では, トリュンケートブドウのウェイト(Weight of truncated Vine)と呼ばれる, 与えられたデータにトリュンケートブドウを適合させる新しいスコアを提案する。
我々は、それらを活用して、切り刻まれたブドウを構築および符号化するアルゴリズムを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Vine copula models have become highly popular and practical tools for modelling multivariate probability distributions due to their flexibility in modelling different kinds of dependences between the random variables involved. However, their flexibility comes with the drawback of a high-dimensional parameter space. To tackle this problem, truncated vine copulas were introduced by Kurowicka (2010) (Gaussian case) and Brechmann and Czado (2013) (general case). Truncated vine copulas contain conditionally independent pair copulas after the truncation level. So far, in the general case, truncated vine constructing algorithms started from the lowest tree in order to encode the largest dependences in the lower trees. The novelty of this paper starts from the observation that a truncated vine is determined by the first tree after the truncation level (see Kovács and Szántai (2017)). This paper introduces a new score for fitting truncated vines to given data, called the Weight of the truncated vine. Then we propose a completely new methodology for constructing truncated vines. We prove theorems which motivate this new approach. While earlier algorithms did not use conditional independences, we give algorithms for constructing and encoding truncated vines which do exploit them. Finally, we illustrate the algorithms on real datasets and compare the results with well-known methods included in R packages. Our method generally compare favorably to previously known methods.
- Abstract(参考訳): 多変量確率分布をモデル化するためのVine copulaモデルは、関連する確率変数間の異なる種類の依存をモデル化する柔軟性のために、非常に人気があり、実用的なツールとなっている。
しかし、その柔軟性は高次元のパラメータ空間の欠点によってもたらされる。
この問題に対処するために、黒ウィッカ (2010) とブレッヒマン・アンド・チャド (2013) によって切り刻まれたブドウパウラが導入された。
切断されたブドウパウラは、切断後の条件に依存しないペアパウラを含む。
これまでのところ、一般的には、下木への最大の依存を符号化するために、最下木から切り刻まれたブドウ構築アルゴリズムが始められた。
この論文の斬新さは、切り刻まれたブドウが切り刻まれた後の最初の木によって決定されるという観察から始まる(Kovács and Szántai (2017)を参照)。
本稿では, トリュンキャットブドウの重量という, 与えられたデータにトリュンキャットブドウを適合させる新しいスコアを提案する。
そこで我々は,切り刻まれたブドウを構築するための全く新しい手法を提案する。
この新しいアプローチを動機づける定理を証明します。
従来のアルゴリズムでは条件付き独立性は使用されなかったが、我々はそれらを活用して切り刻まれたブドウを構築・符号化するアルゴリズムを提供する。
最後に、実際のデータセット上のアルゴリズムを説明し、Rパッケージに含まれるよく知られた手法と比較する。
我々の手法は一般的に、以前知られていた手法と比較して好適に比較される。
関連論文リスト
- Birch SGD: A Tree Graph Framework for Local and Asynchronous SGD Methods [51.54704494242525]
本稿では,分散SGD手法を解析・設計するための新しい統一フレームワークであるBirch SGDを提案する。
本研究では,Birch SGDを用いて8つの新しい手法を設計し,これまでに知られていた手法とともに解析する。
i) すべてのメソッドが$Oleft(frac(R + 1) L Deltavarepsilon + fracsigma2 L Deltavarepsilon2right)$と同じ"イテレーションレート"を共有している。
論文 参考訳(メタデータ) (2025-05-14T08:37:45Z) - SUnAA: Sparse Unmixing using Archetypal Analysis [62.997667081978825]
本稿では, 古細菌スパルス解析(SUnAA)を用いた新しい地質学的エラーマップ手法を提案する。
まず,古細菌スパース解析(SunAA)に基づく新しいモデルの設計を行う。
論文 参考訳(メタデータ) (2023-08-09T07:58:33Z) - Bayesian Decision Trees via Tractable Priors and Probabilistic
Context-Free Grammars [7.259767735431625]
ベイズ決定木を学習するための新しい基準を提案する。
BCART-PCFGは、データから得られる木々間の後部分布から決定木を効率的にサンプリングすることができる。
BCART-PCFGで採取した木は、優雅に構築された決定木に匹敵する性能を示した。
論文 参考訳(メタデータ) (2023-02-15T00:17:41Z) - A Robust Hypothesis Test for Tree Ensemble Pruning [2.4923006485141284]
そこで我々は,勾配増進木アンサンブルの分割品質に関する理論的に正当化された新しい仮説を考案し,提示する。
本手法は, 一般的なペナルティ条件ではなく, サンプル損失の低減につながることを示す。
また,この手法にいくつかの革新的な拡張を加えて,様々な新しい木刈りアルゴリズムの扉を開く。
論文 参考訳(メタデータ) (2023-01-24T16:31:49Z) - Lassoed Tree Boosting [53.56229983630983]
有界断面変動のカドラー関数の大きな非パラメトリック空間において,早期に停止するn-1/4$ L2の収束速度を持つ勾配向上木アルゴリズムを証明した。
我々の収束証明は、ネストしたドンスカー類の経験的損失最小化子による早期停止に関する新しい一般定理に基づいている。
論文 参考訳(メタデータ) (2022-05-22T00:34:41Z) - On multivariate randomized classification trees: $l_0$-based sparsity,
VC~dimension and decomposition methods [0.9346127431927981]
Blanquero et alで提案された非線形連続最適化の定式化について検討する。
我々はまず、$l_0$ノルムの凹凸近似に基づいて、そのような木をスパース化する代替手法を検討する。
より大規模なデータセットを用いた実験により,提案手法は精度を損なうことなく,学習時間を著しく短縮できることが示された。
論文 参考訳(メタデータ) (2021-12-09T22:49:08Z) - A cautionary tale on fitting decision trees to data from additive
models: generalization lower bounds [9.546094657606178]
本研究では,異なる回帰モデルに対する決定木の一般化性能について検討する。
これにより、アルゴリズムが新しいデータに一般化するために(あるいは作らない)仮定する帰納的バイアスが引き起こされる。
スパース加法モデルに適合する大規模な決定木アルゴリズムに対して、シャープな2乗誤差一般化を低い境界で証明する。
論文 参考訳(メタデータ) (2021-10-18T21:22:40Z) - SGA: A Robust Algorithm for Partial Recovery of Tree-Structured
Graphical Models with Noisy Samples [75.32013242448151]
ノードからの観測が独立しているが非識別的に分散ノイズによって破損した場合、Ising Treeモデルの学習を検討する。
Katiyarら。
(2020) は, 正確な木構造は復元できないが, 部分木構造を復元できることを示した。
統計的に堅牢な部分木回復アルゴリズムであるSymmetrized Geometric Averaging(SGA)を提案する。
論文 参考訳(メタデータ) (2021-01-22T01:57:35Z) - MurTree: Optimal Classification Trees via Dynamic Programming and Search [61.817059565926336]
動的プログラミングと探索に基づいて最適な分類木を学習するための新しいアルゴリズムを提案する。
当社のアプローチでは,最先端技術が必要とする時間のごく一部しか使用せず,数万のインスタンスでデータセットを処理することが可能です。
論文 参考訳(メタデータ) (2020-07-24T17:06:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。