論文の概要: Early Warning Index for Patient Deteriorations in Hospitals
- arxiv url: http://arxiv.org/abs/2512.14683v1
- Date: Tue, 16 Dec 2025 18:47:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-17 16:49:26.839793
- Title: Early Warning Index for Patient Deteriorations in Hospitals
- Title(参考訳): 病院における患者劣化の早期警戒指標
- Authors: Dimitris Bertsimas, Yu Ma, Kimberly Villalobos Carballo, Gagan Singh, Michal Laskowski, Jeff Mather, Dan Kombert, Howard Haronian,
- Abstract要約: 我々は、ICU入院、緊急対応チーム派遣、死亡の総括リスクを予測する機械学習フレームワークを開発する。
EWIの設計の鍵は、人間のループプロセスである: 臨床医は警告しきい値を決定し、モデルの出力を解釈する。
EWIを病院のダッシュボードに配置し、患者を3つのリスク層に分類する。
- 参考スコア(独自算出の注目度): 4.086404766354958
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Hospitals lack automated systems to harness the growing volume of heterogeneous clinical and operational data to effectively forecast critical events. Early identification of patients at risk for deterioration is essential not only for patient care quality monitoring but also for physician care management. However, translating varied data streams into accurate and interpretable risk assessments poses significant challenges due to inconsistent data formats. We develop a multimodal machine learning framework, the Early Warning Index (EWI), to predict the aggregate risk of ICU admission, emergency response team dispatch, and mortality. Key to EWI's design is a human-in-the-loop process: clinicians help determine alert thresholds and interpret model outputs, which are enhanced by explainable outputs using Shapley Additive exPlanations (SHAP) to highlight clinical and operational factors (e.g., scheduled surgeries, ward census) driving each patient's risk. We deploy EWI in a hospital dashboard that stratifies patients into three risk tiers. Using a dataset of 18,633 unique patients at a large U.S. hospital, our approach automatically extracts features from both structured and unstructured electronic health record (EHR) data and achieves C-statistics of 0.796. It is currently used as a triage tool for proactively managing at-risk patients. The proposed approach saves physicians valuable time by automatically sorting patients of varying risk levels, allowing them to concentrate on patient care rather than sifting through complex EHR data. By further pinpointing specific risk drivers, the proposed model provides data-informed adjustments to caregiver scheduling and allocation of critical resources. As a result, clinicians and administrators can avert downstream complications, including costly procedures or high readmission rates and improve overall patient flow.
- Abstract(参考訳): 病院は、重要な事象を効果的に予測するために、不均一な臨床および手術データの増加量を利用する自動システムがない。
早期診断は,患者のケア品質モニタリングだけでなく,医師のケア管理にも不可欠である。
しかし、さまざまなデータストリームを正確かつ解釈可能なリスクアセスメントに変換することは、一貫性のないデータフォーマットのために大きな課題となる。
我々は、ICU入院、緊急対応チーム派遣、死亡の総括リスクを予測するため、マルチモーダル機械学習フレームワークであるEarly Warning Index(EWI)を開発した。
臨床医は警告しきい値の判定とモデル出力の解釈を支援し、Shapley Additive ExPlanations (SHAP)を使用して、臨床および手術上の要因(例えば、予定の手術、病棟の国勢調査)を強調するために、説明可能なアウトプットによって強化される。
EWIを病院のダッシュボードに配置し、患者を3つのリスク層に分類する。
米国の大病院で18,633人のユニークな患者のデータセットを用いて、構造化および非構造化の電子健康記録(EHR)データから自動的に特徴を抽出し、0.796のC統計値を得る。
現在、リスクの高い患者を積極的に管理するためのトリアージツールとして使用されている。
提案手法は、リスクレベルの異なる患者を自動的にソートすることで医師が貴重な時間を節約し、複雑なERHデータを精査するのではなく、患者のケアに集中できるようにする。
特定のリスクドライバの特定により、提案モデルは、介護者のスケジューリングと重要なリソースの割り当てのためのデータインフォームド調整を提供する。
結果として、診療医や管理者は、コストのかかる手順や高い寛容率を含む下流の合併症を回避でき、全体の患者フローを改善することができる。
関連論文リスト
- Adaptable Cardiovascular Disease Risk Prediction from Heterogeneous Data using Large Language Models [70.64969663547703]
AdaCVDは、英国バイオバンクから50万人以上の参加者を対象に、大規模な言語モデルに基づいて構築された適応可能なCVDリスク予測フレームワークである。
包括的かつ可変的な患者情報を柔軟に取り込み、構造化データと非構造化テキストの両方をシームレスに統合し、最小限の追加データを使用して新規患者の集団に迅速に適応する。
論文 参考訳(メタデータ) (2025-05-30T14:42:02Z) - Foundation Model of Electronic Medical Records for Adaptive Risk Estimation [6.248030496243407]
ETHOSは幅広いアプリケーションを開発するための多用途フレームワークである。
ARESは、臨床が定義した臨界事象に対するダイナミックでパーソナライズされたリスク確率を計算するためにETHOSを使用する。
ARESはパーソナライズされた説明可能性モジュールも備えており、リスク見積に影響を与える重要な臨床要因を強調している。
論文 参考訳(メタデータ) (2025-02-10T03:22:39Z) - Towards Personalised Patient Risk Prediction Using Temporal Hospital Data Trajectories [0.9545101073027095]
本研究では,集中治療単位患者を滞在中の観察データの軌跡によってグループ化するパイプラインを提案する。
ICUステークの最初の4時間のみのデータにパイプラインを適用すると、患者の大多数が、滞在期間全体を考慮した場合と同じクラスタに割り当てられる。
論文 参考訳(メタデータ) (2024-07-12T15:53:26Z) - Leveraging graph neural networks for supporting Automatic Triage of
Patients [5.864579168378686]
本稿では,救急部門における緊急コード割り当てを管理するためのAIベースのモジュールを提案する。
バイタルサイン、症状、医療史などの関連する患者情報を含むデータは、患者をトリアージカテゴリーに正確に分類するために使用される。
論文 参考訳(メタデータ) (2024-03-11T09:54:35Z) - Event-Based Contrastive Learning for Medical Time Series [11.696805672885798]
Event-Based Contrastive Learning (EBCL) は異種患者データの埋め込みを学習する手法である。
EBCLが重要な下流タスクの性能向上をもたらすモデルを構築するのに利用できることを示す。
論文 参考訳(メタデータ) (2023-12-16T03:50:24Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Predicting Patient Readmission Risk from Medical Text via Knowledge
Graph Enhanced Multiview Graph Convolution [67.72545656557858]
本稿では,電子健康記録の医用テキストを予測に用いる新しい手法を提案する。
外部知識グラフによって強化された多視点グラフを有する患者の退院サマリーを表現している。
実験により,本手法の有効性が証明され,最先端の性能が得られた。
論文 参考訳(メタデータ) (2021-12-19T01:45:57Z) - Optimal discharge of patients from intensive care via a data-driven
policy learning framework [58.720142291102135]
退院課題は、退院期間の短縮と退院決定後の退院や死亡のリスクとの不確実なトレードオフに対処することが重要である。
本研究は、このトレードオフを捉えるためのエンドツーエンドの汎用フレームワークを導入し、最適放電タイミング決定を推奨する。
データ駆動型アプローチは、患者の生理的状態を捉えた同種で離散的な状態空間表現を導出するために用いられる。
論文 参考訳(メタデータ) (2021-12-17T04:39:33Z) - SANSformers: Self-Supervised Forecasting in Electronic Health Records
with Attention-Free Models [48.07469930813923]
本研究は,医療施設への患者訪問数を予測することにより,医療サービスの需要を予測することを目的とする。
SNSformerは、特定の帰納バイアスを設計し、EHRデータの特異な特徴を考慮に入れた、注意のない逐次モデルである。
本研究は, 各種患者集団を対象とした医療利用予測の修正における, 注意力のないモデルと自己指導型事前訓練の有望な可能性について考察した。
論文 参考訳(メタデータ) (2021-08-31T08:23:56Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。