論文の概要: RELIC-GNN: Efficient State Registers Identification with Graph Neural Network for Reverse Engineering
- arxiv url: http://arxiv.org/abs/2512.15037v1
- Date: Wed, 17 Dec 2025 02:56:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-18 17:06:26.835316
- Title: RELIC-GNN: Efficient State Registers Identification with Graph Neural Network for Reverse Engineering
- Title(参考訳): Relic-GNN: リバースエンジニアリングのためのグラフニューラルネットワークを用いた効率的な状態レジスタ同定
- Authors: Weitao Pan, Meng Dong, Zhiliang Qiu, Jianlei Yang, Zhixiong Di, Yiming Gao,
- Abstract要約: ゲートレベルのネットリストのリバースエンジニアリングは、ハードウェアトロイの木馬の検出と設計パイレーシー対策に不可欠である。
本稿では,グラフニューラルネットワークを用いた状態レジスタ同定手法であるRELIC-GNNを提案する。
実験の結果、RELIC-GNNはリコールで100%、精度で30.49%、精度で88.37%を達成することができた。
- 参考スコア(独自算出の注目度): 4.8241514606419225
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reverse engineering of gate-level netlist is critical for Hardware Trojans detection and Design Piracy counteracting. The primary task of gate-level reverse engineering is to separate the control and data signals from the netlist, which is mainly realized by identifying state registers with topological comparison.However, these methods become inefficient for large scale netlist. In this work, we propose RELIC-GNN, a graph neural network based state registers identification method, to address these issues. RELIC-GNN models the path structure of register as a graph and generates corresponding representation by considering node attributes and graph structure during training. The trained GNN model could be adopted to find the registers type very efficiently. Experimental results show that RELIC-GNN could achieve 100% in recall, 30.49% in precision and 88.37% in accuracy on average across different designs, which obtains significant improvements than previous approaches.
- Abstract(参考訳): ゲートレベルのネットリストのリバースエンジニアリングは、ハードウェアトロイの木馬の検出と設計パイレーシー対策に不可欠である。
ゲートレベルのリバースエンジニアリングの第一の課題は、制御とデータ信号をネットリストから分離することであり、これは主に状態レジスタをトポロジ的比較で識別することで実現される。
本研究では,グラフニューラルネットワークを用いた状態レジスタ同定手法であるRELIC-GNNを提案する。
Relic-GNNは、レジスタのパス構造をグラフとしてモデル化し、トレーニング中にノード属性とグラフ構造を考慮して対応する表現を生成する。
トレーニングされたGNNモデルは、レジスタタイプを非常に効率的に見つけるために採用することができる。
実験の結果、RELIC-GNNはリコールで100%、精度で30.49%、精度で88.37%を達成した。
関連論文リスト
- Degree-based stratification of nodes in Graph Neural Networks [66.17149106033126]
グラフニューラルネットワーク(GNN)アーキテクチャを変更して,各グループのノードに対して,重み行列を個別に学習する。
このシンプルな実装変更により、データセットとGNNメソッドのパフォーマンスが改善されているようだ。
論文 参考訳(メタデータ) (2023-12-16T14:09:23Z) - T-GAE: Transferable Graph Autoencoder for Network Alignment [79.89704126746204]
T-GAEはグラフオートエンコーダフレームワークで、GNNの転送性と安定性を活用して、再トレーニングなしに効率的なネットワークアライメントを実現する。
実験の結果、T-GAEは最先端の最適化手法と最高のGNN手法を最大38.7%、50.8%で上回っていることがわかった。
論文 参考訳(メタデータ) (2023-10-05T02:58:29Z) - Anomal-E: A Self-Supervised Network Intrusion Detection System based on
Graph Neural Networks [0.0]
本稿では,自己教師型ネットワーク侵入と異常検出のためのグラフニューラルネットワーク(GNN)の応用について検討する。
GNNは、グラフ構造を学習に組み込んだグラフベースのデータのためのディープラーニングアプローチである。
本稿では, エッジ特徴とグラフトポロジ構造を利用したGNNによる侵入・異常検出手法であるAnomal-Eを提案する。
論文 参考訳(メタデータ) (2022-07-14T10:59:39Z) - Invertible Neural Networks for Graph Prediction [22.140275054568985]
本研究では,ディープ・インバーチブル・ニューラルネットワークを用いた条件生成について述べる。
私たちの目標は,前処理と後処理の予測と生成を同時に行うことにあるので,エンドツーエンドのトレーニングアプローチを採用しています。
論文 参考訳(メタデータ) (2022-06-02T17:28:33Z) - Edge Graph Neural Networks for Massive MIMO Detection [15.970981766599035]
無線通信システムにおいて、MIMO(Massive Multiple-Input Multiple-Out)検出は重要な問題である。
従来のBreief Propagation(BP)検出器はループグラフでは性能が良くないが、最近のグラフニューラルネットワーク(GNN)ベースの手法はBPの欠点を克服し、優れた性能を実現することができる。
論文 参考訳(メタデータ) (2022-05-22T08:01:47Z) - ReIGNN: State Register Identification Using Graph Neural Networks for
Circuit Reverse Engineering [1.6049556762414257]
ReIGNNは、グラフニューラルネットワーク(GNN)と構造解析を組み合わせた学習ベースのレジスタ分類手法である。
我々は、ReIGNNが平均96.5%のバランスの取れた精度と97.7%の感度を異なる設計で達成できることを示した。
論文 参考訳(メタデータ) (2021-12-01T19:53:45Z) - Logsig-RNN: a novel network for robust and efficient skeleton-based
action recognition [3.775860173040509]
我々は、ログネイティブ層とリカレント型ニューラルネットワーク(RNN)を組み合わせた新しいモジュール、Logsig-RNNを提案する。
特に,簡単な経路変換層とLogsig-RNNを組み合わせることで,Chalearn2013ジェスチャデータの最先端精度を実現する。
論文 参考訳(メタデータ) (2021-10-25T14:47:15Z) - Learning to Drop: Robust Graph Neural Network via Topological Denoising [50.81722989898142]
グラフニューラルネットワーク(GNN)のロバスト性および一般化性能を向上させるために,パラメータ化トポロジカルデノイングネットワークであるPTDNetを提案する。
PTDNetは、パラメータ化されたネットワークでスパーシファイドグラフ内のエッジ数をペナル化することで、タスク非関連エッジを創出する。
PTDNetはGNNの性能を著しく向上させ,さらにノイズの多いデータセットでは性能が向上することを示す。
論文 参考訳(メタデータ) (2020-11-13T18:53:21Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
グラフニューラルネットワーク(GNN)はグラフ表現学習において大きな成功を収めている。
GNNは、実際には非常に異なるグラフ部分構造に対して同一の表現を生成する。
より強力なGNNは、最近高階試験を模倣して提案され、基礎となるグラフ構造を疎結合にできないため、非効率である。
本稿では,グラフ表現学習の新たなクラスとして距離分解(DE)を提案する。
論文 参考訳(メタデータ) (2020-08-31T23:15:40Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
我々はグラフ信号処理を活用してグラフニューラルネットワーク(GNN)の表現空間を特徴付ける。
GNNにおけるグラフ畳み込みフィルタの役割について議論し、そのようなフィルタで構築されたアーキテクチャは、置換同値の基本的な性質と位相変化に対する安定性を持つことを示す。
また,ロボット群に対するリコメンデータシステムや分散型コントローラの学習におけるGNNの利用について検討した。
論文 参考訳(メタデータ) (2020-03-08T13:02:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。