論文の概要: Beyond Fast and Slow: Cognitive-Inspired Elastic Reasoning for Large Language Models
- arxiv url: http://arxiv.org/abs/2512.15089v1
- Date: Wed, 17 Dec 2025 05:11:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-18 17:06:26.86338
- Title: Beyond Fast and Slow: Cognitive-Inspired Elastic Reasoning for Large Language Models
- Title(参考訳): 高速かつスローを超える: 認知にインスパイアされた大規模言語モデルのための弾力的推論
- Authors: Jinwu Hu, Dongjin Yang, Langyu Bian, Zhiquan Wen, Yufeng Wang, Yaofo Chen, Bin Xiao, Yuanqing Li, Mingkui Tan,
- Abstract要約: CogERは、人間の階層的推論にインスパイアされたフレームワークである。
外部ツールを必要とするクエリに対して、Cognitive Tool-Assisted Reasoningを導入する。
CogERは最先端のTest-Timeスケーリングメソッドより優れています。
- 参考スコア(独自算出の注目度): 39.03483371038282
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have demonstrated impressive performance across various language tasks. However, existing LLM reasoning strategies mainly rely on the LLM itself with fast or slow mode (like o1 thinking) and thus struggle to balance reasoning efficiency and accuracy across queries of varying difficulties. In this paper, we propose Cognitive-Inspired Elastic Reasoning (CogER), a framework inspired by human hierarchical reasoning that dynamically selects the most suitable reasoning strategy for each query. Specifically, CogER first assesses the complexity of incoming queries and assigns them to one of several predefined levels, each corresponding to a tailored processing strategy, thereby addressing the challenge of unobservable query difficulty. To achieve automatic strategy selection, we model the process as a Markov Decision Process and train a CogER-Agent using reinforcement learning. The agent is guided by a reward function that balances solution quality and computational cost, ensuring resource-efficient reasoning. Moreover, for queries requiring external tools, we introduce Cognitive Tool-Assisted Reasoning, which enables the LLM to autonomously invoke external tools within its chain-of-thought. Extensive experiments demonstrate that CogER outperforms state-of-the-art Test-Time scaling methods, achieving at least a 13% relative improvement in average exact match on In-Domain tasks and an 8% relative gain on Out-of-Domain tasks.
- Abstract(参考訳): 大規模言語モデル(LLM)は、様々な言語タスクにまたがる印象的なパフォーマンスを示している。
しかし、既存のLSM推論戦略は主に高速または遅いモード(o1思考など)でLLM自体に依存しており、様々な困難のあるクエリ間で推論の効率と精度のバランスをとるのに苦労している。
本稿では,人間の階層的推論にインスパイアされた認知誘発弾性推論(CogER)を提案し,クエリ毎に最適な推論戦略を動的に選択する。
特に、CogERはまず、入ってくるクエリの複雑さを評価し、それらをいくつかの事前定義されたレベルのうちの1つに割り当てる。
自動戦略選択を実現するため、マルコフ決定プロセスとしてプロセスをモデル化し、強化学習を用いてCogER-Agentを訓練する。
このエージェントは、ソリューションの品質と計算コストのバランスを保ち、資源効率の高い推論を保証する報奨関数によって誘導される。
さらに、外部ツールを必要とするクエリに対して、LLMが外部ツールをチェーン・オブ・ソート内で自律的に呼び出すことができるCognitive Tool-Assisted Reasoningを導入する。
大規模な実験により、CogERは最先端のTest-Timeスケーリング手法より優れており、In-Domainタスクにおける平均的正確なマッチングにおいて少なくとも13%、Out-of-Domainタスクでは8%の相対的な改善が達成されている。
関連論文リスト
- AgentPRM: Process Reward Models for LLM Agents via Step-Wise Promise and Progress [71.02263260394261]
大規模言語モデル(LLM)は、マルチターン意思決定タスクにおいて依然として課題に直面している。
プロセス報酬モデル(PRM)を構築し、各意思決定を評価し、エージェントの意思決定プロセスを導く。
AgentPRMは、シーケンシャルな決定と最終的な目標への貢献の間の相互依存の両方をキャプチャする。
論文 参考訳(メタデータ) (2025-11-11T14:57:54Z) - Agentic Reinforced Policy Optimization [66.96989268893932]
検証可能な報酬付き大規模強化学習(RLVR)は,大規模言語モデル(LLM)を単一ターン推論タスクに活用する効果を実証している。
現在のRLアルゴリズムは、モデル固有のロングホライゾン推論能力と、マルチターンツールインタラクションにおけるその習熟性のバランスが不十分である。
エージェント強化ポリシー最適化(ARPO: Agentic Reinforced Policy Optimization)は,マルチターンLDMエージェントを学習するためのエージェントRLアルゴリズムである。
論文 参考訳(メタデータ) (2025-07-26T07:53:11Z) - Reasoning on a Budget: A Survey of Adaptive and Controllable Test-Time Compute in LLMs [45.83245433138508]
大規模言語モデル(LLM)は、幅広いタスクを解くことができる汎用エージェントへと急速に進歩してきた。
彼らは、タスクの複雑さに関わらず、固定推論時間計算を適用し、しばしば難しいことを考えながら単純な問題を過小評価する。
本調査では, LLM推論の計算効率向上を目的とした, 効率的なテスト時間計算戦略の総合的なレビューを行う。
論文 参考訳(メタデータ) (2025-07-02T18:27:42Z) - Towards Efficient Multi-LLM Inference: Characterization and Analysis of LLM Routing and Hierarchical Techniques [14.892995952768352]
言語モデル(LM)は、テキスト生成、要約、質問応答といったタスクに優れています。
彼らの推論は計算コストが高く、ハードウェア、電力、帯域幅に制限のある設定でエネルギーを集中的に消費する。
近年のアプローチでは、クエリの複雑さに基づいて、動的に計算資源を割り当てる複数のLLMインテリジェントモデル選択戦略が導入されている。
論文 参考訳(メタデータ) (2025-06-06T23:13:08Z) - PATS: Process-Level Adaptive Thinking Mode Switching [53.53401063490537]
現在の大言語モデル(LLM)は、通常、難易度に関わらず、すべての質問に対して、単純または複雑に固定された推論戦略を採用する。
このようなタスクと推論プロセスの複雑さの変化の無視は、パフォーマンスと効率のバランスを損なう。
既存の手法では, 難易度が異なる問題に対処するために, 学習不要な高速スロー思考システムを導入しようとするが, 厳密な解レベルの戦略調整によって制限される。
プロセスレベル適応思考モードスイッチング(PATS)という新しい推論パラダイムを提案し,各ステップの難易度に基づいてLLMが推論戦略を動的に調整し,そのバランスを最適化する。
論文 参考訳(メタデータ) (2025-05-25T17:58:50Z) - A Survey of Slow Thinking-based Reasoning LLMs using Reinforced Learning and Inference-time Scaling Law [29.763080554625216]
本調査は「スロー思考」を模倣した大規模言語モデル(LLM)の最近の進歩を考察する。
LLMは、数学の推論、視覚的推論、診断、マルチエージェントの議論などの複雑なタスクの間、動的に計算資源をスケーリングすることに焦点を当てている。
論文 参考訳(メタデータ) (2025-05-05T14:14:59Z) - Textualized Agent-Style Reasoning for Complex Tasks by Multiple Round LLM Generation [49.27250832754313]
我々は、llmベースの自律エージェントフレームワークであるAgentCOTを紹介する。
それぞれのステップで、AgentCOTはアクションを選択し、それを実行して、証拠を裏付ける中間結果を得る。
エージェントCOTの性能を高めるための2つの新しい戦略を導入する。
論文 参考訳(メタデータ) (2024-09-19T02:20:06Z) - Meta Reasoning for Large Language Models [58.87183757029041]
大規模言語モデル(LLM)の新規かつ効率的なシステムプロセッシング手法であるメタ推論プロンプト(MRP)を導入する。
MRPは、各タスクの特定の要求に基づいて異なる推論メソッドを動的に選択し、適用するようLLMに誘導する。
総合的なベンチマークによりMPPの有効性を評価する。
論文 参考訳(メタデータ) (2024-06-17T16:14:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。