論文の概要: DAG Learning from Zero-Inflated Count Data Using Continuous Optimization
- arxiv url: http://arxiv.org/abs/2512.16233v1
- Date: Thu, 18 Dec 2025 06:26:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-19 18:10:31.948673
- Title: DAG Learning from Zero-Inflated Count Data Using Continuous Optimization
- Title(参考訳): 連続最適化を用いたゼロインフレーション数データからのDAG学習
- Authors: Noriaki Sato, Marco Scutari, Shuichi Kawano, Rui Yamaguchi, Seiya Imoto,
- Abstract要約: ZICOは、シミュレートされたデータ上でより高速なランタイムで優れたパフォーマンスを実現する。
ZICOは完全にベクトル化され、ミニバッチ化されており、幅広い領域で実用的なランタイムを持つ大きな変数集合を学習することができる。
- 参考スコア(独自算出の注目度): 2.0443308797642965
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We address network structure learning from zero-inflated count data by casting each node as a zero-inflated generalized linear model and optimizing a smooth, score-based objective under a directed acyclic graph constraint. Our Zero-Inflated Continuous Optimization (ZICO) approach uses node-wise likelihoods with canonical links and enforces acyclicity through a differentiable surrogate constraint combined with sparsity regularization. ZICO achieves superior performance with faster runtimes on simulated data. It also performs comparably to or better than common algorithms for reverse engineering gene regulatory networks. ZICO is fully vectorized and mini-batched, enabling learning on larger variable sets with practical runtimes in a wide range of domains.
- Abstract(参考訳): 各ノードをゼロ膨らませた一般化線形モデルとしてキャストし、有向非巡回グラフ制約の下でスムーズなスコアベース目的を最適化することにより、ゼロ膨らんだカウントデータからネットワーク構造を学習する。
我々のZICO(Zero-Inflated Continuous Optimization)アプローチは、標準リンクを持つノードワイズを使い、スペーサ正規化と組み合わせた微分可能なサロゲート制約により非巡回性を強制する。
ZICOは、シミュレートされたデータ上でより高速なランタイムで優れたパフォーマンスを実現する。
また、リバースエンジニアリング遺伝子制御ネットワークのための一般的なアルゴリズムと同等かそれ以上に機能する。
ZICOは完全にベクトル化され、ミニバッチ化されており、幅広い領域で実用的なランタイムを持つ大きな変数集合を学習することができる。
関連論文リスト
- Sparsity-Constraint Optimization via Splicing Iteration [1.3622424109977902]
我々は sPlicing itEration (SCOPE) を用いたスペーサリティ制約最適化アルゴリズムを開発した。
SCOPEはパラメータをチューニングせずに効率的に収束する。
SCOPEを用いて2次最適化を解き、スパース分類器を学習し、バイナリ変数のスパースマルコフネットワークを復元する。
C++実装に基づいたオープンソースのPythonパッケージskscopeがGitHubで公開されている。
論文 参考訳(メタデータ) (2024-06-17T18:34:51Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
不均一グラフニューラルネットワーク(HGNN)は、異種グラフを深層学習するための強力なツールである。
最近のプリ計算ベースのHGNNは、一時間メッセージパッシングを使用して不均一グラフを正規形テンソルに変換する。
我々はRandom Projection Heterogeneous Graph Neural Network (RpHGNN) というハイブリッド計算前HGNNを提案する。
論文 参考訳(メタデータ) (2023-10-23T01:25:44Z) - Performance Embeddings: A Similarity-based Approach to Automatic
Performance Optimization [71.69092462147292]
パフォーマンス埋め込みは、アプリケーション間でパフォーマンスチューニングの知識伝達を可能にする。
本研究では, 深層ニューラルネットワーク, 密度およびスパース線形代数合成, および数値風速予測ステンシルのケーススタディにおいて, この伝達チューニング手法を実証する。
論文 参考訳(メタデータ) (2023-03-14T15:51:35Z) - EGRC-Net: Embedding-induced Graph Refinement Clustering Network [66.44293190793294]
埋め込みによるグラフリファインメントクラスタリングネットワーク (EGRC-Net) という新しいグラフクラスタリングネットワークを提案する。
EGRC-Netは学習した埋め込みを利用して初期グラフを適応的に洗練し、クラスタリング性能を向上させる。
提案手法はいくつかの最先端手法より一貫して優れている。
論文 参考訳(メタデータ) (2022-11-19T09:08:43Z) - Fast-Convergent Federated Learning via Cyclic Aggregation [10.658882342481542]
フェデレートラーニング(FL)は、複数のエッジデバイス上で共有グローバルモデルを最適化することを目的として、中央サーバに(プライベート)データを送信しない。
本稿では,サーバ側での循環学習率を利用して,性能向上によるトレーニングイテレーション数を削減した。
数値計算の結果,提案したサイクリックアグリゲーションを既存のFLアルゴリズムに簡単に差し込むことで,学習イテレーションの数を効果的に減らし,性能が向上することを確認した。
論文 参考訳(メタデータ) (2022-10-29T07:20:59Z) - Efficient Neural Causal Discovery without Acyclicity Constraints [30.08586535981525]
本研究では,有向非巡回因果グラフの効率的な構造学習法であるENCOを提案する。
実験の結果,ENCOは数百ノードのグラフを効率よく回収できることがわかった。
論文 参考訳(メタデータ) (2021-07-22T07:01:41Z) - Gradient Coding with Dynamic Clustering for Straggler-Tolerant
Distributed Learning [55.052517095437]
勾配降下(GD)は、複数の労働者にデータセットを分散することで学習タスクの並列化に広く用いられている。
分散同期gdにおけるイテレーション完了時間ごとの重要なパフォーマンスボトルネックは$straggling$ workersである。
コード化された分散技術は、最近ストラグラーを緩和し、労働者に冗長な計算を割り当てることでgdイテレーションを高速化するために導入された。
本稿では,従来のトラグリング動作に依存する可能性のあるコードの中から,冗長なデータを労働者に割り当てて選択する動的GC方式を提案する。
論文 参考訳(メタデータ) (2021-03-01T18:51:29Z) - Learning to Optimize Non-Rigid Tracking [54.94145312763044]
我々は、堅牢性を改善し、解法収束を高速化するために学習可能な最適化を採用する。
まず、CNNを通じてエンドツーエンドに学習された深い特徴にアライメントデータ項を統合することにより、追跡対象をアップグレードする。
次に,プレコンディショニング手法と学習手法のギャップを,プレコンディショナを生成するためにトレーニングされたConditionNetを導入することで埋める。
論文 参考訳(メタデータ) (2020-03-27T04:40:57Z) - Autoencoder-based time series clustering with energy applications [0.0]
時系列クラスタリングは、データの特定の性質のため、難しい作業である。
本稿では,畳み込み型オートエンコーダとk-メノイドアルゴリズムの組み合わせによる時系列クラスタリングについて検討する。
論文 参考訳(メタデータ) (2020-02-10T10:04:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。