論文の概要: CIRR: Causal-Invariant Retrieval-Augmented Recommendation with Faithful Explanations under Distribution Shift
- arxiv url: http://arxiv.org/abs/2512.18683v1
- Date: Sun, 21 Dec 2025 10:41:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-23 18:54:32.455584
- Title: CIRR: Causal-Invariant Retrieval-Augmented Recommendation with Faithful Explanations under Distribution Shift
- Title(参考訳): CIRR: 分布シフト下での忠実な説明を伴う因果不変量拡張レコメンデーション
- Authors: Sebastian Sun,
- Abstract要約: 本稿では,Causal-Invariant Retrieval-Augmented Recommendationフレームワークを提案する。
CIRRは因果推論により環境不変のユーザ嗜好表現を学習する。
CIRRは分散シフト下での堅牢なパフォーマンスを実現し、OODシナリオでは15.4%(ベースライン)から5.6%に低下した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in retrieval-augmented generation (RAG) have shown promise in enhancing recommendation systems with external knowledge. However, existing RAG-based recommenders face two critical challenges: (1) vulnerability to distribution shifts across different environments (e.g., time periods, user segments), leading to performance degradation in out-of-distribution (OOD) scenarios, and (2) lack of faithful explanations that can be verified against retrieved evidence. In this paper, we propose CIRR, a Causal-Invariant Retrieval-Augmented Recommendation framework that addresses both challenges simultaneously. CIRR learns environment-invariant user preference representations through causal inference, which guide a debiased retrieval process to select relevant evidence from multiple sources. Furthermore, we introduce consistency constraints that enforce faithfulness between retrieved evidence, generated explanations, and recommendation outputs. Extensive experiments on two real-world datasets demonstrate that CIRR achieves robust performance under distribution shifts, reducing performance degradation from 15.4% (baseline) to only 5.6% in OOD scenarios, while providing more faithful and interpretable explanations (26% improvement in faithfulness score) compared to state-of-the-art baselines.
- Abstract(参考訳): 検索強化世代(RAG)の最近の進歩は、外部知識によるレコメンデーションシステムの強化を約束している。
しかしながら、既存のRAGベースのレコメンデータは、(1) 異なる環境(例えば、時間、ユーザセグメント)にわたる分散シフトに対する脆弱性、(OOD) のシナリオのパフォーマンス低下、(2) 回収された証拠に対して検証可能な忠実な説明の欠如、という2つの重大な課題に直面している。
本稿では,両課題を同時に解決するCausal-Invariant Retrieval-Augmented RecommendationフレームワークであるCIRRを提案する。
CIRRは、因果推論によって環境不変のユーザ嗜好表現を学習し、複数のソースから関連するエビデンスを選択する。
さらに,得られた証拠,生成した説明,レコメンデーションアウトプット間の忠実さを強制する一貫性の制約を導入する。
2つの実世界のデータセットに対する大規模な実験は、CIRRが分散シフトの下で堅牢なパフォーマンスを実現し、パフォーマンスの低下を15.4%(ベースライン)からわずか5.6%に減らし、より忠実で解釈可能な説明(忠実度スコアが26%改善)を最先端のベースラインと比較した。
関連論文リスト
- Advancing Reliable Test-Time Adaptation of Vision-Language Models under Visual Variations [67.35596444651037]
視覚言語モデル(VLM)は、素晴らしいゼロショット機能を示すが、ラベル付きデータが利用できない場合、下流タスクの分散シフトに苦慮する。
本稿では,信頼性を両面から高めるReliable Test-Time Adaptation (ReTA)法を提案する。
論文 参考訳(メタデータ) (2025-07-13T05:37:33Z) - A Novel Generative Model with Causality Constraint for Mitigating Biases in Recommender Systems [20.672668625179526]
遅延共起バイアスは、ユーザのフィードバックとアイテムの露出の間の真の因果関係を曖昧にする可能性がある。
本稿では,Recommender Systemsにおける表現学習のための遅延因果制約(Latent Causality Constraints)と呼ばれる新しい生成フレームワークを提案する。
論文 参考訳(メタデータ) (2025-05-22T14:09:39Z) - RbFT: Robust Fine-tuning for Retrieval-Augmented Generation against Retrieval Defects [12.5122702720856]
本稿では,検索欠陥に対する大規模言語モデルのレジリエンスを高めるために,Robust Fine-Tuning (RbFT)を提案する。
実験の結果,RbFTは多様な検索条件におけるRAGシステムのロバスト性を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2025-01-30T14:15:09Z) - Distributionally and Adversarially Robust Logistic Regression via Intersecting Wasserstein Balls [8.720733751119994]
提案手法は,提案手法が標準データセットのベンチマーク手法よりも優れていることを示す。
前者からインスピレーションを得て、ロジスティック回帰のためにAROのワッサーシュタイン DR について検討し、トラクタブル凸最適化の修正が認められることを示す。
論文 参考訳(メタデータ) (2024-07-18T15:59:37Z) - A Thorough Performance Benchmarking on Lightweight Embedding-based Recommender Systems [67.52782366565658]
State-of-the-art recommender system (RS) は、埋め込みベクトルによって符号化される分類的特徴に依存し、結果として非常に大きな埋め込みテーブルとなる。
軽量埋め込み型RSの繁栄にもかかわらず、評価プロトコルには幅広い多様性が見られる。
本研究では, LERSの性能, 効率, クロスタスク転送性について, 徹底的なベンチマークによる検討を行った。
論文 参考訳(メタデータ) (2024-06-25T07:45:00Z) - Diagnosing and Rectifying Fake OOD Invariance: A Restructured Causal
Approach [51.012396632595554]
不変表現学習(IRL)は、不変因果的特徴から環境から切り離されたラベルへの予測を促進する。
最近の理論的結果は、IRLによって回復されたいくつかの因果的特徴は、訓練環境ではドメイン不変のふりをするが、目に見えない領域では失敗する。
本研究では,RS-SCMに関する条件付き相互情報に基づく手法を開発し,その効果を巧みに補正する。
論文 参考訳(メタデータ) (2023-12-15T12:58:05Z) - Sequential Recommendation with Controllable Diversification: Representation Degeneration and Diversity [59.24517649169952]
我々は,表現退化問題は,既存のSR手法における推奨の多様性の欠如の根本原因であると主張している。
Singular sPectrum sMoothing regularization for Recommendation (SPMRec)を提案する。
論文 参考訳(メタデータ) (2023-06-21T02:42:37Z) - CausPref: Causal Preference Learning for Out-of-Distribution
Recommendation [36.22965012642248]
現在のレコメンデータシステムは、現実的なシナリオにおけるユーザやアイテムの配布シフトに対して、依然として脆弱である。
本稿では,推奨特化DAG学習者を因果選好に基づく推薦フレームワークCausPrefに組み込むことを提案する。
当社のアプローチは、アウト・オブ・ディストリビューション・セッティングのタイプにおいて、ベンチマークモデルを大幅に上回っている。
論文 参考訳(メタデータ) (2022-02-08T16:42:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。