論文の概要: Parameter-Efficient Neural CDEs via Implicit Function Jacobians
- arxiv url: http://arxiv.org/abs/2512.20625v1
- Date: Tue, 25 Nov 2025 11:14:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-29 00:37:57.090204
- Title: Parameter-Efficient Neural CDEs via Implicit Function Jacobians
- Title(参考訳): 入射関数ジャコビアンを用いたパラメータ効率の良いニューラルCDE
- Authors: Ilya Kuleshov, Alexey Zaytsev,
- Abstract要約: 本稿では,ニューラルCDEに対するパラメータ効率の代替手法を提案する。
パラメータははるかに少なくなりますが、"Continuous RNN"という非常に論理的なアナロジーも必要です。
- 参考スコア(独自算出の注目度): 0.9870126088784975
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural Controlled Differential Equations (Neural CDEs, NCDEs) are a unique branch of methods, specifically tailored for analysing temporal sequences. However, they come with drawbacks, the main one being the number of parameters, required for the method's operation. In this paper, we propose an alternative, parameter-efficient look at Neural CDEs. It requires much fewer parameters, while also presenting a very logical analogy as the "Continuous RNN", which the Neural CDEs aspire to.
- Abstract(参考訳): ニューラル制御微分方程式 (Neural Controlled Differential Equations, NCDEs) は、時間的シーケンスの分析に特化した手法の一分野である。
しかし、それらには欠点があり、主なものはメソッドの操作に必要なパラメータの数である。
本稿では,ニューラルCDEに対するパラメータ効率の代替手法を提案する。
パラメータははるかに少なくなりますが、Neural CDEが目指す“Continuous RNN”という非常に論理的なアナロジーも必要です。
関連論文リスト
- Calibrating Neural Networks' parameters through Optimal Contraction in a Prediction Problem [0.0]
論文では、リカレントニューラルネットワーク(RNN)を、パラメータが線形な領域の収縮に変換する方法について詳述する。
次に、損失関数の特定の正規化項を持つRNNによってモデル化された予測問題は、その一階条件を解析的に表現できることを示した。
特定の条件が満たされた場合、最適なパラメータが存在し、任意の所望の精度に簡単なアルゴリズムで見つけることができる。
論文 参考訳(メタデータ) (2024-06-15T18:08:04Z) - Neural Parameter Regression for Explicit Representations of PDE Solution Operators [22.355460388065964]
偏微分方程式(PDE)の解演算子を学習するための新しいフレームワークであるニューラル回帰(NPR)を導入する。
NPRは、ニューラルネットワーク(NN)パラメータを回帰するために、Physics-Informed Neural Network (PINN, Raissi et al., 2021) 技術を使用している。
このフレームワークは、新しい初期条件と境界条件に顕著な適応性を示し、高速な微調整と推論を可能にした。
論文 参考訳(メタデータ) (2024-03-19T14:30:56Z) - Unconstrained Parametrization of Dissipative and Contracting Neural
Ordinary Differential Equations [0.9437165725355698]
本稿では,Deep Neural Networks (DNN) のクラスを連続的に導入し,研究する。
私たちは、提案されているNodeRENを、堅牢な学習と制御にとって重要な特性である、収縮性と分散性で支援する方法を示します。
論文 参考訳(メタデータ) (2023-04-06T10:02:54Z) - Learnable Path in Neural Controlled Differential Equations [11.38331901271794]
ニューラルネットワーク制御微分方程式(NCDEs)は、(不規則な)時系列処理における特別なモデルである。
本稿では,適切な方法を学ぶのと同一の潜在経路を生成する方法を提案する。
我々はNCDEとNODEをベースとしたエンコーダデコーダモジュールを設計し,その特別な訓練方法を提案する。
論文 参考訳(メタデータ) (2023-01-11T07:05:27Z) - Learning Low Dimensional State Spaces with Overparameterized Recurrent
Neural Nets [57.06026574261203]
我々は、長期記憶をモデル化できる低次元状態空間を学習するための理論的証拠を提供する。
実験は、線形RNNと非線形RNNの両方で低次元状態空間を学習することで、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2022-10-25T14:45:15Z) - Sample-Then-Optimize Batch Neural Thompson Sampling [50.800944138278474]
我々はトンプソンサンプリング(TS)ポリシーに基づくブラックボックス最適化のための2つのアルゴリズムを提案する。
入力クエリを選択するには、NNをトレーニングし、トレーニングされたNNを最大化してクエリを選択するだけです。
我々のアルゴリズムは、大きなパラメータ行列を逆転する必要性を助長するが、TSポリシーの妥当性は保たれている。
論文 参考訳(メタデータ) (2022-10-13T09:01:58Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
この研究は、有限なサポートを持つ一般パラメトリックカーネルを用いた時間点プロセス推論の効率的な解を提供する。
脳磁図(MEG)により記録された脳信号からの刺激誘発パターンの発生をモデル化し,その有効性を評価する。
その結果,提案手法により,最先端技術よりもパターン遅延の推定精度が向上することが示唆された。
論文 参考訳(メタデータ) (2022-10-10T12:35:02Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。