論文の概要: Neural Parameter Regression for Explicit Representations of PDE Solution Operators
- arxiv url: http://arxiv.org/abs/2403.12764v1
- Date: Tue, 19 Mar 2024 14:30:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 13:53:54.737628
- Title: Neural Parameter Regression for Explicit Representations of PDE Solution Operators
- Title(参考訳): PDE解演算子の明示的表現のためのニューラルパラメータ回帰
- Authors: Konrad Mundinger, Max Zimmer, Sebastian Pokutta,
- Abstract要約: 偏微分方程式(PDE)の解演算子を学習するための新しいフレームワークであるニューラル回帰(NPR)を導入する。
NPRは、ニューラルネットワーク(NN)パラメータを回帰するために、Physics-Informed Neural Network (PINN, Raissi et al., 2021) 技術を使用している。
このフレームワークは、新しい初期条件と境界条件に顕著な適応性を示し、高速な微調整と推論を可能にした。
- 参考スコア(独自算出の注目度): 22.355460388065964
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce Neural Parameter Regression (NPR), a novel framework specifically developed for learning solution operators in Partial Differential Equations (PDEs). Tailored for operator learning, this approach surpasses traditional DeepONets (Lu et al., 2021) by employing Physics-Informed Neural Network (PINN, Raissi et al., 2019) techniques to regress Neural Network (NN) parameters. By parametrizing each solution based on specific initial conditions, it effectively approximates a mapping between function spaces. Our method enhances parameter efficiency by incorporating low-rank matrices, thereby boosting computational efficiency and scalability. The framework shows remarkable adaptability to new initial and boundary conditions, allowing for rapid fine-tuning and inference, even in cases of out-of-distribution examples.
- Abstract(参考訳): 本稿では、偏微分方程式(PDE)の解演算子を学習するための新しいフレームワークであるニューラルパラメータ回帰(NPR)を紹介する。
従来のDeepONets(Lu et al , 2021)を越え、Physical-Informed Neural Network (PINN, Raissi et al , 2019) を用いてニューラルネットワーク(NN)パラメータを回帰する。
各解を特定の初期条件に基づいてパラメータ化することにより、関数空間間の写像を効果的に近似する。
提案手法は,低ランク行列を組み込むことでパラメータ効率を向上し,計算効率と拡張性を向上する。
このフレームワークは、新しい初期条件と境界条件に顕著な適応性を示し、アウト・オブ・ディストリビューションの例であっても、迅速な微調整と推論を可能にする。
関連論文リスト
- A foundational neural operator that continuously learns without
forgetting [1.0878040851638]
本稿では,科学計算の基礎モデルとしてNeural Combinatorial Wavelet Neural Operator (NCWNO) の概念を紹介する。
NCWNOは、物理学の様々なスペクトルから学習し、パラメトリック偏微分方程式(PDE)に関連する解作用素に継続的に適応するように特別に設計されている。
提案した基礎モデルには、2つの大きな利点がある: (i) 複数のパラメトリックPDEに対する解演算子を同時に学習し、 (ii) 極小調整の少ない新しいパラメトリックPDEに素早く一般化できる。
論文 参考訳(メタデータ) (2023-10-29T03:20:10Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - Learning Low Dimensional State Spaces with Overparameterized Recurrent
Neural Nets [57.06026574261203]
我々は、長期記憶をモデル化できる低次元状態空間を学習するための理論的証拠を提供する。
実験は、線形RNNと非線形RNNの両方で低次元状態空間を学習することで、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2022-10-25T14:45:15Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
ニューラルネットワークを用いた偏微分方程式(PDE)の解法を提案する。
ニューラルネットワークの集合を縮小順序 Proper Orthogonal Decomposition (POD) に回帰する。
これらのネットワークは、所定のPDEのパラメータを取り込み、PDEに還元順序近似を計算する分岐ネットワークと組み合わせて使用される。
論文 参考訳(メタデータ) (2022-08-02T18:27:13Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - Learning Regularization Parameters of Inverse Problems via Deep Neural
Networks [0.0]
ネットワークが観察データから正規化パラメータへのマッピングを近似するように訓練される、教師付き学習アプローチを検討する。
本稿では,多種多様な正規化関数,フォワードモデル,ノイズモデルについて考察する。
ネットワークが取得する正規化パラメータは、より効率的に計算でき、より正確なソリューションにもつながります。
論文 参考訳(メタデータ) (2021-04-14T02:38:38Z) - A Deep Learning approach to Reduced Order Modelling of Parameter
Dependent Partial Differential Equations [0.2148535041822524]
パラメーター対解写像の効率的な近似法として,Deep Neural Networks に基づく構築的アプローチを開発した。
特に, パラメタライズド・アドベクション拡散PDEについて検討し, 強輸送場の存在下で方法論を検証した。
論文 参考訳(メタデータ) (2021-03-10T17:01:42Z) - NTopo: Mesh-free Topology Optimization using Implicit Neural
Representations [35.07884509198916]
トポロジ最適化問題に対処する新しい機械学習手法を提案する。
我々は多層パーセプトロン(MLP)を用いて密度場と変位場の両方をパラメータ化する。
実験を通じて示すように、私たちのアプローチの大きな利点は、継続的ソリューション空間の自己教師付き学習を可能にすることです。
論文 参考訳(メタデータ) (2021-02-22T05:25:22Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。