論文の概要: Symbolic regression for defect interactions in 2D materials
- arxiv url: http://arxiv.org/abs/2512.20785v1
- Date: Tue, 23 Dec 2025 21:33:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-25 19:43:21.607061
- Title: Symbolic regression for defect interactions in 2D materials
- Title(参考訳): 2次元材料における欠陥相互作用のシンボリック回帰
- Authors: Mikhail Lazarev, Andrey Ustyuzhanin,
- Abstract要約: 記号回帰は、データを記述する解析方程式を発見するための強力な手法である。
本研究では, 深い記号回帰アルゴリズムSEGVAEを用いて, 欠陥のある2次元材料の特性を解析した。
- 参考スコア(独自算出の注目度): 0.2721477719641864
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning models have become firmly established across all scientific fields. Extracting features from data and making inferences based on them with neural network models often yields high accuracy; however, this approach has several drawbacks. Symbolic regression is a powerful technique for discovering analytical equations that describe data, providing interpretable and generalizable models capable of predicting unseen data. Symbolic regression methods have gained new momentum with the advancement of neural network technologies and offer several advantages, the main one being the interpretability of results. In this work, we examined the application of the deep symbolic regression algorithm SEGVAE to determine the properties of two-dimensional materials with defects. Comparing the results with state-of-the-art graph neural network-based methods shows comparable or, in some cases, even identical outcomes. We also discuss the applicability of this class of methods in natural sciences.
- Abstract(参考訳): 機械学習モデルは、あらゆる科学分野にしっかりと確立されている。
データから特徴を抽出し、ニューラルネットワークモデルに基づく推論を行うと、高い精度が得られることが多いが、このアプローチにはいくつかの欠点がある。
シンボリック回帰は、データを記述する解析方程式を発見するための強力な手法であり、不明瞭なデータを予測できる解釈可能で一般化可能なモデルを提供する。
シンボリック回帰法は、ニューラルネットワーク技術の進歩とともに新たな勢いを増し、いくつかの利点をもたらし、主なものは結果の解釈可能性である。
本研究では, 深い記号回帰アルゴリズムSEGVAEを用いて, 欠陥のある2次元材料の特性を解析した。
結果と最先端のグラフニューラルネットワークに基づく手法を比較すると、同じ結果が得られるか、場合によっては同じ結果が得られる。
自然科学におけるこの種の手法の適用性についても論じる。
関連論文リスト
- Discovering interpretable elastoplasticity models via the neural
polynomial method enabled symbolic regressions [0.0]
従来のニューラルネットワークの弾塑性モデルは、しばしば解釈可能性に欠けると見なされる。
本稿では,人間専門家が解釈可能な数学的モデルを返す2段階の機械学習手法を提案する。
論文 参考訳(メタデータ) (2023-07-24T22:22:32Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Toward Physically Plausible Data-Driven Models: A Novel Neural Network
Approach to Symbolic Regression [2.7071541526963805]
本稿では,ニューラルネットワークに基づく記号回帰手法を提案する。
非常に小さなトレーニングデータセットとシステムに関する事前知識に基づいて、物理的に妥当なモデルを構築する。
本研究では,TurtleBot 2移動ロボット,磁気操作システム,2つの抵抗の等価抵抗,アンチロックブレーキシステムの長手力の4つの試験システムに対するアプローチを実験的に評価した。
論文 参考訳(メタデータ) (2023-02-01T22:05:04Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
グラフ表現と学習を伴う新しい学習パラダイムを提案する。
本フレームワークは,1) 下位モデルとしてのバックボーンネットワーク(フィードフォワードニューラルネットなど)が,予測ラベルの入力および出力として機能を取り,2) 上位モデルとしてのグラフニューラルネットワークが,観測データから構築された特徴データグラフをメッセージパッシングすることで,新機能の埋め込みを外挿することを学ぶ。
論文 参考訳(メタデータ) (2021-10-09T09:02:45Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Stochasticity in Neural ODEs: An Empirical Study [68.8204255655161]
ニューラルネットワークの正規化(ドロップアウトなど)は、より高度な一般化を可能にするディープラーニングの広範な技術である。
トレーニング中のデータ拡張は、同じモデルの決定論的およびバージョンの両方のパフォーマンスを向上させることを示す。
しかし、データ拡張によって得られる改善により、経験的正規化の利得は完全に排除され、ニューラルODEとニューラルSDEの性能は無視される。
論文 参考訳(メタデータ) (2020-02-22T22:12:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。