論文の概要: DiEC: Diffusion Embedded Clustering
- arxiv url: http://arxiv.org/abs/2512.20905v2
- Date: Thu, 25 Dec 2025 16:22:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-29 13:23:29.830831
- Title: DiEC: Diffusion Embedded Clustering
- Title(参考訳): DiEC: Diffusion Embedded Clustering
- Authors: Haidong Hu,
- Abstract要約: ディープクラスタリングは、明確なクラスタ構造を公開する表現に依存します。
従来のほとんどのメソッドは、オートエンコーダや自己教師付きエンコーダによる単一の埋め込みを学び、クラスタリングの第一の表現として扱う。
本研究では,事前学習した拡散U-Netの中間活性化を直接利用して,この軌道を利用する教師なしクラスタリングフレームワークであるEmbed Diffusion Clustering (DiEC)を提案する。
- 参考スコア(独自算出の注目度): 0.76629754443761
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep clustering critically depends on representations that expose clear cluster structure, yet most prior methods learn a single embedding with an autoencoder or a self-supervised encoder and treat it as the primary representation for clustering. In contrast, a pretrained diffusion model induces a rich representation trajectory over network layers and noise timesteps, along which clusterability varies substantially. We propose Diffusion Embedded Clustering (DiEC), an unsupervised clustering framework that exploits this trajectory by directly leveraging intermediate activations of a pretrained diffusion U-Net. DiEC formulates representation selection over layer * timestep and adopts a practical two-stage procedure: it uses the U-Net bottleneck as the Clustering Middle Layer (CML, l*) and identifies the Clustering-Optimal Timestep (COT, t*) via an efficient subset-based, noise-averaged search. Conditioning on (l*, t*), DiEC learns clustering embeddings through a lightweight residual mapping, optimized with a DEC-style KL self-training objective and structural regularization, while a parallel random-timestep denoising-consistency loss stabilizes training and preserves diffusion behavior. Experiments on standard benchmarks demonstrate that DiEC achieves strong clustering performance and reveal the importance of selecting diffusion representations for clustering.
- Abstract(参考訳): ディープクラスタリングは、明確なクラスタ構造を明らかにする表現に依存するが、従来のほとんどのメソッドは、オートエンコーダや自己管理エンコーダによる単一の埋め込みを学び、クラスタリングの第一の表現として扱う。
対照的に、事前訓練された拡散モデルでは、ネットワーク層とノイズの時間ステップにリッチな表現軌跡を誘導し、クラスタビリティは大幅に変化する。
本稿では,事前学習した拡散U-Netの中間活性化を直接利用して,この軌道を利用する教師なしクラスタリングフレームワークであるDiffusion Embedded Clustering (DiEC)を提案する。
クラスタリング中間層(CML, l*)としてU-Netボトルネックを使用し、効率的なサブセットベースのノイズ平均探索を通じてクラスタリング最適時間ステップ(COT, t*)を識別する。
DiECは(l*, t*)を条件に、DECスタイルのKL自己学習目標と構造正則化に最適化された軽量残差写像を通じてクラスタリング埋め込みを学習し、一方、並列ランダム・タイム・デノナイジング・一貫性損失はトレーニングを安定化させ、拡散挙動を保存する。
標準ベンチマークの実験では、DECはクラスタリング性能を強く達成し、クラスタリングのための拡散表現を選択することの重要性を明らかにしている。
関連論文リスト
- You Can Trust Your Clustering Model: A Parameter-free Self-Boosting Plug-in for Deep Clustering [73.48306836608124]
DCBoostはパラメータフリーのプラグインで、現在のディープクラスタリングモデルのグローバルな特徴構造を強化するように設計されている。
本手法は, クラスタリング性能を効果的に向上することを目的としている。
論文 参考訳(メタデータ) (2025-11-26T09:16:36Z) - Self-Enhanced Image Clustering with Cross-Modal Semantic Consistency [57.961869351897384]
効率的な画像クラスタリングのためのクロスモーダルなセマンティック一貫性に基づくフレームワークを提案する。
当社のフレームワークはまず,クロスモーダルセマンティック一貫性を通じて,強力な基盤を構築します。
最初の段階では、トレーニング済みモデルのリッチなセマンティクスに合わせて、軽量クラスタリングヘッドをトレーニングします。
第2段階では、自己強化微調整戦略を導入する。
論文 参考訳(メタデータ) (2025-08-02T08:12:57Z) - Scalable Context-Preserving Model-Aware Deep Clustering for Hyperspectral Images [51.95768218975529]
ハイパースペクトル画像(HSI)の教師なし解析にサブスペースクラスタリングが広く採用されている。
近年のモデル対応深層空間クラスタリング手法では、O(n2)の複雑性を持つ自己表現行列の計算とスペクトルクラスタリングを含む2段階のフレームワークを用いることが多い。
本稿では,HSIクラスタリングを効率的に行うために,局所構造と非局所構造を協調的にキャプチャする,ベース表現に基づく拡張性のあるコンテキスト保存深層クラスタリング手法を提案する。
論文 参考訳(メタデータ) (2025-06-12T16:43:09Z) - Fuzzy Cluster-Aware Contrastive Clustering for Time Series [1.435214708535728]
従来の教師なしクラスタリング手法は、しばしば時系列データの複雑な性質を捉えるのに失敗する。
本稿では,表現学習とクラスタリングを協調的に最適化するファジィクラスタ対応コントラストクラスタリングフレームワーク(FCACC)を提案する。
本稿では,時系列データの様々な特徴を活用して特徴抽出を強化するために,新しい3視点データ拡張手法を提案する。
論文 参考訳(メタデータ) (2025-03-28T07:59:23Z) - Towards Learnable Anchor for Deep Multi-View Clustering [49.767879678193005]
本稿では,線形時間でクラスタリングを行うDeep Multi-view Anchor Clustering (DMAC)モデルを提案する。
最適なアンカーを用いて、全サンプルグラフを計算し、クラスタリングのための識別的埋め込みを導出する。
いくつかのデータセットの実験では、最先端の競合に比べてDMACの性能と効率が優れていることが示されている。
論文 参考訳(メタデータ) (2025-03-16T09:38:11Z) - End-to-end Learnable Clustering for Intent Learning in Recommendation [54.157784572994316]
我々は、アンダーラインELCRecと呼ばれる新しい意図学習手法を提案する。
振る舞い表現学習をUnderlineEnd-to-end UnderlineLearnable UnderlineClusteringフレームワークに統合する。
1億3000万ページビューの産業レコメンデーションシステムに本手法をデプロイし,有望な結果を得る。
論文 参考訳(メタデータ) (2024-01-11T15:22:55Z) - Deep Temporal Contrastive Clustering [21.660509622172274]
本稿では,時間差の深いクラスタリング手法を提案する。
対照的な学習パラダイムを、ディープ時系列クラスタリング研究に取り入れている。
様々な時系列データセットの実験は、最先端技術に対する我々のアプローチの優位性を実証している。
論文 参考訳(メタデータ) (2022-12-29T16:43:34Z) - Very Compact Clusters with Structural Regularization via Similarity and
Connectivity [3.779514860341336]
本稿では,汎用データセットのためのエンドツーエンドのディープクラスタリングアルゴリズムであるVery Compact Clusters (VCC)を提案する。
提案手法は,最先端のクラスタリング手法よりも優れたクラスタリング性能を実現する。
論文 参考訳(メタデータ) (2021-06-09T23:22:03Z) - Hierarchical Clustering using Auto-encoded Compact Representation for
Time-series Analysis [8.660029077292346]
本稿では,学習した時系列のコンパクト表現,オートエンコードコンパクトシーケンス(AECS),階層クラスタリングアプローチを組み合わせたクラスタの識別機構を提案する。
Sequence to Sequence(seq2seq)オートエンコーダと集約型階層クラスタリングに基づくRecurrent Neural Network(RNN)を利用するアルゴリズムです。
論文 参考訳(メタデータ) (2021-01-11T08:03:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。