論文の概要: Dictionary-Transform Generative Adversarial Networks
- arxiv url: http://arxiv.org/abs/2512.21677v1
- Date: Thu, 25 Dec 2025 13:41:14 GMT
- ステータス: 情報取得中
- システム内更新日: 2025-12-29 12:06:25.15028
- Title: Dictionary-Transform Generative Adversarial Networks
- Title(参考訳): 辞書変換による生成逆数ネットワーク
- Authors: Angshul Majumdar,
- Abstract要約: emphDictionary-Transform Generative Adversarial Networks (DT-GAN)を紹介する。
DT-GANは、ジェネレータがスパース合成辞書であり、判別器がエネルギーモデルとして機能する解析変換であるモデルベース対向フレームワークである。
DT-GAN対角ゲームは良好に提案され、少なくとも1つのナッシュ均衡が認められることを示す。
- 参考スコア(独自算出の注目度): 11.62669179647184
- License:
- Abstract: Generative adversarial networks (GANs) are widely used for distribution learning, yet their classical formulations remain theoretically fragile, with ill-posed objectives, unstable training dynamics, and limited interpretability. In this work, we introduce \emph{Dictionary-Transform Generative Adversarial Networks} (DT-GAN), a fully model-based adversarial framework in which the generator is a sparse synthesis dictionary and the discriminator is an analysis transform acting as an energy model. By restricting both players to linear operators with explicit constraints, DT-GAN departs fundamentally from neural GAN architectures and admits rigorous theoretical analysis. We show that the DT-GAN adversarial game is well posed and admits at least one Nash equilibrium. Under a sparse generative model, equilibrium solutions are provably identifiable up to standard permutation and sign ambiguities and exhibit a precise geometric alignment between synthesis and analysis operators. We further establish finite-sample stability and consistency of empirical equilibria, demonstrating that DT-GAN training converges reliably under standard sampling assumptions and remains robust in heavy-tailed regimes. Experiments on mixture-structured synthetic data validate the theoretical predictions, showing that DT-GAN consistently recovers underlying structure and exhibits stable behavior under identical optimization budgets where a standard GAN degrades. DT-GAN is not proposed as a universal replacement for neural GANs, but as a principled adversarial alternative for data distributions that admit sparse synthesis structure. The results demonstrate that adversarial learning can be made interpretable, stable, and provably correct when grounded in classical sparse modeling.
- Abstract(参考訳): GAN(Generative Adversarial Network)は、分散学習に広く用いられているが、古典的な定式化は理論上も脆弱であり、未定の目的、不安定なトレーニングダイナミクス、限定的な解釈性がある。
本稿では,ジェネレータがスパース合成辞書であり,識別器がエネルギーモデルとして機能する解析変換である,完全モデルに基づく対向的フレームワークである 'emph{Dictionary-Transform Generative Adversarial Networks} (DT-GAN) を紹介する。
両プレイヤーを明示的な制約で線形演算子に制限することにより、DT-GANは神経GANアーキテクチャから分離し、厳密な理論的解析を認める。
DT-GAN対角ゲームは良好に提案され、少なくとも1つのナッシュ均衡が認められることを示す。
スパース生成モデルの下では、平衡解は標準置換や符号のあいまいさまで証明可能であり、合成作用素と解析作用素の間の正確な幾何的アライメントを示す。
さらに、実験平衡の有限サンプル安定性と一貫性を確立し、DT-GANトレーニングが標準サンプリング仮定の下で確実に収束し、重い尾を持つ状態のままであることを示す。
混合構造合成データの実験は、DT-GANが基盤構造を安定的に回復し、標準GANが劣化する同じ最適化予算の下で安定した挙動を示すことを示す理論予測を検証した。
DT-GANは、神経GANの普遍的な置換としてではなく、スパース合成構造を持つデータ分布の原則的な逆代替として提案されている。
その結果,古典的スパースモデリングを基礎として,対角学習を解釈可能,安定的,証明可能とすることができることがわかった。
関連論文リスト
- Bridging Symmetry and Robustness: On the Role of Equivariance in Enhancing Adversarial Robustness [9.013874391203453]
敵対的な例では、知覚不能な入力摂動に対する感度を利用して、ディープニューラルネットワークの重大な脆弱性を明らかにしている。
本研究では,群-同変畳み込みを組込み,対向ロバスト性に対するアーキテクチャ的アプローチについて検討する。
これらの層は、モデル行動と入力空間の構造化変換を整合させる対称性の先行を符号化し、よりスムーズな決定境界を促進する。
論文 参考訳(メタデータ) (2025-10-17T19:26:58Z) - Score-Based Model for Low-Rank Tensor Recovery [49.158601255093416]
低ランクテンソル分解(TD)は、マルチウェイデータ解析に有効なフレームワークを提供する。
従来のTD法は、CPやタッカー分解のような事前定義された構造的仮定に依存している。
本稿では,事前定義された構造的仮定や分布的仮定の必要性を排除したスコアベースモデルを提案する。
論文 参考訳(メタデータ) (2025-06-27T15:05:37Z) - Non-Asymptotic Stability and Consistency Guarantees for Physics-Informed Neural Networks via Coercive Operator Analysis [0.0]
物理インフォームドニューラルネットワーク(PINN)の安定性と一貫性を解析するための統一的理論的枠組みを提案する。
PINNは、サンプルコロケーションと境界点上の残留損失を最小限に抑え、偏微分方程式(PDE)の近似解を求める。
我々は、整合性の作用素レベルと変分の概念の両方を形式化し、ソボレフノルムの残留最小化が、穏やかな正則性の下でエネルギーと一様ノルムの収束をもたらすことを証明した。
論文 参考訳(メタデータ) (2025-06-16T14:41:15Z) - Latent Diffusion Model Based Denoising Receiver for 6G Semantic Communication: From Stochastic Differential Theory to Application [11.385703484113552]
生成人工知能(GAI)を利用した新しい意味コミュニケーションフレームワークを提案する。
意味的特徴抽出のための変分オートエンコーダを組み合わせた潜在拡散モデル(LDM)に基づくセマンティックコミュニケーションフレームワークを提案する。
提案システムはゼロショットの一般化をサポートし,低SNRおよびアウト・オブ・ディストリビューション条件下での優れた性能を実現する訓練自由フレームワークである。
論文 参考訳(メタデータ) (2025-06-06T03:20:32Z) - DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained
Diffusion [66.21290235237808]
本稿では,データセットからのインスタンスのバッチを進化状態にエンコードするエネルギー制約拡散モデルを提案する。
任意のインスタンス対間の対拡散強度に対する閉形式最適推定を示唆する厳密な理論を提供する。
各種タスクにおいて優れた性能を有する汎用エンコーダバックボーンとして,本モデルの適用性を示す実験を行った。
論文 参考訳(メタデータ) (2023-01-23T15:18:54Z) - RCC-GAN: Regularized Compound Conditional GAN for Large-Scale Tabular
Data Synthesis [7.491711487306447]
本稿では,大規模データベースを合成するためのGAN(Generative Adversarial Network)を提案する。
本稿では,ベクトルを二分的特徴と離散的特徴を同時に組み込むための新しい定式化を提案する。
本稿では、トレーニング中に、その重みベクトルにおける前例のない変動を制限するための正規化スキームを提案する。
論文 参考訳(メタデータ) (2022-05-24T01:14:59Z) - Self-Ensembling GAN for Cross-Domain Semantic Segmentation [107.27377745720243]
本稿では,セマンティックセグメンテーションのためのクロスドメインデータを利用した自己理解型生成逆数ネットワーク(SE-GAN)を提案する。
SE-GANでは、教師ネットワークと学生ネットワークは、意味分節マップを生成するための自己組織化モデルを構成する。
その単純さにもかかわらず、SE-GANは敵の訓練性能を大幅に向上させ、モデルの安定性を高めることができる。
論文 参考訳(メタデータ) (2021-12-15T09:50:25Z) - Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited
Data [125.7135706352493]
GAN(Generative Adversarial Network)は、高忠実度画像を合成するために、訓練に十分なデータを必要とする。
近年の研究では、差別者の過度な適合により、限られたデータでGANを訓練することは困難であることが示されている。
本稿では,APA (Adaptive Pseudo Augmentation) と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2021-11-12T18:13:45Z) - Prequential MDL for Causal Structure Learning with Neural Networks [9.669269791955012]
ベイジアンネットワークの実用的スコアリング関数を導出するために,事前最小記述長の原理が利用できることを示す。
我々は、調整しなければならない事前やその他の正規化子を誘導するスパーシリティに頼ることなく、可塑性および擬似グラフ構造を得る。
本研究は, 適応速度から因果構造を推定する最近の研究と, 分布変化の源泉から観測結果が得られた場合の因果構造との関係について考察する。
論文 参考訳(メタデータ) (2021-07-02T22:35:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。