論文の概要: Non-Asymptotic Stability and Consistency Guarantees for Physics-Informed Neural Networks via Coercive Operator Analysis
- arxiv url: http://arxiv.org/abs/2506.13554v2
- Date: Wed, 03 Sep 2025 04:37:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-04 17:24:09.185345
- Title: Non-Asymptotic Stability and Consistency Guarantees for Physics-Informed Neural Networks via Coercive Operator Analysis
- Title(参考訳): 強制演算子解析による物理インフォームドニューラルネットワークの非漸近安定性と一貫性保証
- Authors: Ronald Katende,
- Abstract要約: 物理インフォームドニューラルネットワーク(PINN)の安定性と一貫性を解析するための統一的理論的枠組みを提案する。
PINNは、サンプルコロケーションと境界点上の残留損失を最小限に抑え、偏微分方程式(PDE)の近似解を求める。
我々は、整合性の作用素レベルと変分の概念の両方を形式化し、ソボレフノルムの残留最小化が、穏やかな正則性の下でエネルギーと一様ノルムの収束をもたらすことを証明した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a unified theoretical framework for analyzing the stability and consistency of Physics-Informed Neural Networks (PINNs), grounded in operator coercivity, variational formulations, and non-asymptotic perturbation theory. PINNs approximate solutions to partial differential equations (PDEs) by minimizing residual losses over sampled collocation and boundary points. We formalize both operator-level and variational notions of consistency, proving that residual minimization in Sobolev norms leads to convergence in energy and uniform norms under mild regularity. Deterministic stability bounds quantify how bounded perturbations to the network outputs propagate through the full composite loss, while probabilistic concentration results via McDiarmid's inequality yield sample complexity guarantees for residual-based generalization. A unified generalization bound links residual consistency, projection error, and perturbation sensitivity. Empirical results on elliptic, parabolic, and nonlinear PDEs confirm the predictive accuracy of our theoretical bounds across regimes. The framework identifies key structural principles, such as operator coercivity, activation smoothness, and sampling admissibility, that underlie robust and generalizable PINN training, offering principled guidance for the design and analysis of PDE-informed learning systems.
- Abstract(参考訳): 本稿では, 演算子保磁力, 変分定式化, 非漸近摂動理論を基礎として, 物理情報ニューラルネットワーク(PINN)の安定性と一貫性を解析するための統一理論フレームワークを提案する。
PINNは、サンプルコロケーションと境界点上の残留損失を最小限に抑え、偏微分方程式(PDE)の近似解を導出する。
我々は、整合性の作用素レベルと変分の概念の両方を形式化し、ソボレフノルムの残留最小化が、穏やかな正則性の下でエネルギーと一様ノルムの収束をもたらすことを証明した。
決定論的安定性境界は、ネットワークへの有界摂動が完全な複合損失を通してどのように伝播するかを定量的に表し、一方、マクダイアルミドの不等式による確率的濃度は、残留基底の一般化を保証している。
統一一般化は、残差一貫性、投影誤差、摂動感度をリンクする。
楕円型, 放物型, 非線形PDEの実験的結果から, 我々の理論的境界の予測精度が確認された。
このフレームワークは、PDEインフォームド学習システムの設計と分析のための原則化されたガイダンスを提供する、堅牢で一般化可能なPINNトレーニングの基盤となる演算子保磁力、アクティベーションスムネス、サンプリング許容性などの重要な構造原理を識別する。
関連論文リスト
- Causal Operator Discovery in Partial Differential Equations via Counterfactual Physics-Informed Neural Networks [0.0]
物理インフォームドニューラルネットワークと対実最小化を用いた偏微分方程式(PDE)の因果構造を発見するための原理的枠組みを開発する。
気候力学,腫瘍拡散,海流の総合的および実世界のデータセット上で,この枠組みを検証した。
本研究は、因果的PDE発見を、構造因果モデルと変分残差解析に基づく、抽出可能かつ解釈可能な推論タスクとして位置づける。
論文 参考訳(メタデータ) (2025-06-25T07:15:42Z) - Wasserstein Distributionally Robust Nonparametric Regression [9.65010022854885]
本稿では、ワッサーシュタイン分布性非パラメトリック推定器の一般化特性について検討する。
我々は,過度の局地的最悪のリスクに対して,非漸近的エラー境界を確立する。
提案した推定器のロバスト性はシミュレーション研究を通じて評価し,MNISTデータセットへの適用例を示した。
論文 参考訳(メタデータ) (2025-05-12T18:07:37Z) - Unified theoretical guarantees for stability, consistency, and convergence in neural PDE solvers from non-IID data to physics-informed networks [0.0]
現実的なトレーニング条件下では,ニューラルネットワークの安定性,一貫性,収束性に対処する統一的な理論的枠組みを確立する。
従属データを用いた標準教師付き学習では、勾配法に対して一様安定性境界を導出する。
ヘテロジニアスデータを用いたフェデレーション学習では、曲率認識の集約と情報理論の分岐によるモデル不整合性の定量化を行う。
論文 参考訳(メタデータ) (2024-09-08T08:48:42Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
本稿では,ニューラルネットワークトレーニングを安定化(大規模)するための原理的手法として,線形アヘッドの理論解析を提案する。
最適化過程の不安定性は、しばしば損失ランドスケープの非単調性によって引き起こされるものであり、非拡張作用素の理論を活用することによって線型性がいかに役立つかを示す。
論文 参考訳(メタデータ) (2023-10-20T12:45:12Z) - Learning Discretized Neural Networks under Ricci Flow [48.47315844022283]
低精度重みとアクティベーションからなる離散ニューラルネットワーク(DNN)について検討する。
DNNは、訓練中に微分不可能な離散関数のために無限あるいはゼロの勾配に悩まされる。
論文 参考訳(メタデータ) (2023-02-07T10:51:53Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - A PDE-based Explanation of Extreme Numerical Sensitivities and Edge of Stability in Training Neural Networks [12.355137704908042]
勾配降下型深層ネットワーク(SGD)の現在の訓練実践における抑制的数値不安定性を示す。
我々は、偏微分方程式(PDE)の数値解析を用いて理論的枠組みを提示し、畳み込みニューラルネットワーク(CNN)の勾配降下PDEを分析する。
これはCNNの降下に伴う非線形PDEの結果であり、離散化のステップサイズを過度に運転すると局所線形化が変化し、安定化効果がもたらされることを示す。
論文 参考訳(メタデータ) (2022-06-04T14:54:05Z) - coVariance Neural Networks [119.45320143101381]
グラフニューラルネットワーク(GNN)は、グラフ構造化データ内の相互関係を利用して学習する効果的なフレームワークである。
我々は、サンプル共分散行列をグラフとして扱う、共分散ニューラルネットワーク(VNN)と呼ばれるGNNアーキテクチャを提案する。
VNN の性能は PCA ベースの統計手法よりも安定していることを示す。
論文 参考訳(メタデータ) (2022-05-31T15:04:43Z) - On Convergence of Training Loss Without Reaching Stationary Points [62.41370821014218]
ニューラルネットワークの重み変数は、損失関数の勾配が消える定常点に収束しないことを示す。
エルゴード理論の力学系に基づく新しい視点を提案する。
論文 参考訳(メタデータ) (2021-10-12T18:12:23Z) - Stability of Neural Networks on Manifolds to Relative Perturbations [118.84154142918214]
グラフニューラルネットワーク(GNN)は多くの実践シナリオにおいて素晴らしいパフォーマンスを示している。
GNNは大規模グラフ上でうまくスケールすることができるが、これは既存の安定性がノード数とともに増加するという事実に矛盾する。
論文 参考訳(メタデータ) (2021-10-10T04:37:19Z) - On the Stability Properties and the Optimization Landscape of Training
Problems with Squared Loss for Neural Networks and General Nonlinear Conic
Approximation Schemes [0.0]
ニューラルネットワークと一般的な非線形円錐近似スキームの2乗損失を伴うトレーニング問題の最適化景観と安定性特性について検討する。
これらの不安定性に寄与する同じ効果が、サドル点や急激な局所ミニマの出現の原因でもあることを証明している。
論文 参考訳(メタデータ) (2020-11-06T11:34:59Z) - Neural Control Variates [71.42768823631918]
ニューラルネットワークの集合が、積分のよい近似を見つけるという課題に直面していることを示す。
理論的に最適な分散最小化損失関数を導出し、実際に安定したオンライントレーニングを行うための代替の複合損失を提案する。
具体的には、学習した光場近似が高次バウンスに十分な品質であることを示し、誤差補正を省略し、無視可能な可視バイアスのコストでノイズを劇的に低減できることを示した。
論文 参考訳(メタデータ) (2020-06-02T11:17:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。