論文の概要: Likelihood-Preserving Embeddings for Statistical Inference
- arxiv url: http://arxiv.org/abs/2512.22638v1
- Date: Sat, 27 Dec 2025 16:21:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-30 22:37:30.154478
- Title: Likelihood-Preserving Embeddings for Statistical Inference
- Title(参考訳): 統計的推論のための親和性保存型埋め込み
- Authors: Deniz Akdemir,
- Abstract要約: 現代の機械学習の埋め込みは、高次元データの強力な圧縮を提供する。
本稿では,確率保存型埋め込みの理論を考案する。
ガウス分布とコーシー分布の実験は指数族理論によって予測される鋭い相転移を検証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern machine learning embeddings provide powerful compression of high-dimensional data, yet they typically destroy the geometric structure required for classical likelihood-based statistical inference. This paper develops a rigorous theory of likelihood-preserving embeddings: learned representations that can replace raw data in likelihood-based workflows -- hypothesis testing, confidence interval construction, model selection -- without altering inferential conclusions. We introduce the Likelihood-Ratio Distortion metric $Δ_n$, which measures the maximum error in log-likelihood ratios induced by an embedding. Our main theoretical contribution is the Hinge Theorem, which establishes that controlling $Δ_n$ is necessary and sufficient for preserving inference. Specifically, if the distortion satisfies $Δ_n = o_p(1)$, then (i) all likelihood-ratio based tests and Bayes factors are asymptotically preserved, and (ii) surrogate maximum likelihood estimators are asymptotically equivalent to full-data MLEs. We prove an impossibility result showing that universal likelihood preservation requires essentially invertible embeddings, motivating the need for model-class-specific guarantees. We then provide a constructive framework using neural networks as approximate sufficient statistics, deriving explicit bounds connecting training loss to inferential guarantees. Experiments on Gaussian and Cauchy distributions validate the sharp phase transition predicted by exponential family theory, and applications to distributed clinical inference demonstrate practical utility.
- Abstract(参考訳): 現代の機械学習の埋め込みは、高次元データの強力な圧縮を提供するが、古典的な確率に基づく統計的推測に必要な幾何学的構造を破壊するのが一般的である。
本稿では、仮説テスト、信頼区間構築、モデル選択といった、確率に基づくワークフローで生データを置き換えることができる学習表現を、推論的結論を変えることなく、厳密な確率保存埋め込みの理論を開発する。
埋め込みによって引き起こされる対数類似度比の最大誤差を計測するLikelihood-Ratio Distortion メトリック $Δ_n$ を導入する。
我々の主要な理論的貢献は、$Δ_n$の制御が推論を保存するのに十分であることを示すヒンジ定理である。
具体的には、歪みが$Δ_n = o_p(1)$を満たすなら、
一 すべての可能性比に基づく試験及びベイズ因子が漸近的に保存され、
(ii)最大極大推定器は、漸近的に完全データMLEと等価である。
我々は、普遍的な可能性保存は本質的には非可逆な埋め込みを必要とし、モデルクラス固有の保証の必要性を動機付けていることを示す。
次に、ニューラルネットワークを十分な統計量として用い、トレーニング損失と推論保証を結びつける明示的な境界を導出する構成的フレームワークを提供する。
ガウス分布とコーシー分布の実験は指数家族理論によって予測される急激な相転移を検証し、分散臨床推論への応用は実用性を示す。
関連論文リスト
- Geometric Calibration and Neutral Zones for Uncertainty-Aware Multi-Class Classification [0.0]
この研究は情報幾何学と統計的学習を橋渡しし、厳密な検証を必要とするアプリケーションにおいて不確実性を認識した分類の正式な保証を提供する。
アデノ関連ウイルスの分類に関する実証的な検証は、2段階のフレームワークが72.5%のエラーをキャプチャし、34.5%のサンプルを遅延させ、自動決定エラー率を16.8%から6.9%に下げていることを示している。
論文 参考訳(メタデータ) (2025-11-26T01:29:49Z) - Multiply Robust Conformal Risk Control with Coarsened Data [0.0]
コンフォーマル予測(CP)は近年,膨大な関心を集めている。
本稿では、粗いデータから得られる結果に対して、分布自由な有効予測領域を得るという一般的な問題について考察する。
半パラメトリック理論の原則的利用は、フレキシブルな機械学習手法の促進の鍵となる利点を持つ。
論文 参考訳(メタデータ) (2025-08-21T12:14:44Z) - Principled Input-Output-Conditioned Post-Hoc Uncertainty Estimation for Regression Networks [1.4671424999873808]
不確実性は安全性に敏感なアプリケーションでは重要であるが、予測性能に悪影響を及ぼすため、市販のニューラルネットワークから排除されることが多い。
本稿では,従来の入力と凍結モデルの両方に補助モデルを適用することにより,回帰タスクにおけるポストホック不確実性推定のための理論的基盤となるフレームワークを提案する。
論文 参考訳(メタデータ) (2025-06-01T09:13:27Z) - A Likelihood Based Approach to Distribution Regression Using Conditional Deep Generative Models [8.862614615192578]
本研究では,条件付き深部生成モデルの推定のための可能性に基づくアプローチの大規模サンプル特性について検討する。
その結果,条件分布を推定するための最大極大推定器の収束率を導いた。
論文 参考訳(メタデータ) (2024-10-02T20:46:21Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
ニューラルモデルのトレーニング目的に直接キャリブレーション項を含めることを提案する。
古典的なキャリブレーション誤差の定式化を緩和することにより、エンドツーエンドのバックプロパゲーションを可能にする。
既存の計算パイプラインに直接適用でき、信頼性の高いブラックボックス後部推論が可能である。
論文 参考訳(メタデータ) (2023-10-20T10:20:45Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
ニューラルネットワークで実装された効率的かつ効果的な対実的推論のためのフレームワークを提案する。
提案手法は、推定された反事実結果から見つからないデータまでを一般化する能力を高める。
複数のデータセットで実施した実証実験の結果は、我々の理論的な主張に対する説得力のある支持を提供する。
論文 参考訳(メタデータ) (2023-06-09T08:30:51Z) - Which Invariance Should We Transfer? A Causal Minimax Learning Approach [18.71316951734806]
本稿では、因果的観点からの包括的ミニマックス分析について述べる。
最小の最悪のリスクを持つサブセットを探索する効率的なアルゴリズムを提案する。
本手法の有効性と有効性は, 合成データとアルツハイマー病の診断で実証された。
論文 参考訳(メタデータ) (2021-07-05T09:07:29Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
予測信頼性尺度は統計学と機械学習において基本的なものである。
これらの措置は、実際に使用される多種多様なモデルを考慮に入れるべきである。
この研究で開発されたフレームワークは、リスクフィットのトレードオフとして信頼性を表現している。
論文 参考訳(メタデータ) (2020-11-24T19:52:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。