論文の概要: GRExplainer: A Universal Explanation Method for Temporal Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2512.22772v1
- Date: Sun, 28 Dec 2025 04:24:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-30 22:37:30.216411
- Title: GRExplainer: A Universal Explanation Method for Temporal Graph Neural Networks
- Title(参考訳): GRExplainer: 時間グラフニューラルネットワークの普遍的説明法
- Authors: Xuyan Li, Jie Wang, Zheng Yan,
- Abstract要約: テンポラルグラフニューラルネットワーク(TGNN)は、そのようなグラフを処理する強力なツールとして登場した。
現在の方法は特定のTGNNタイプに合わせて調整され、一般性を制限する。
計算コストが高く、大規模ネットワークには適さない。
本稿では,TGNNの汎用的,効率的,ユーザフレンドリな説明手法であるGRExplainerを提案する。
- 参考スコア(独自算出の注目度): 4.260850670990204
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamic graphs are widely used to represent evolving real-world networks. Temporal Graph Neural Networks (TGNNs) have emerged as a powerful tool for processing such graphs, but the lack of transparency and explainability limits their practical adoption. Research on TGNN explainability is still in its early stages and faces several key issues: (i) Current methods are tailored to specific TGNN types, restricting generality. (ii) They suffer from high computational costs, making them unsuitable for large-scale networks. (iii) They often overlook the structural connectivity of explanations and require prior knowledge, reducing user-friendliness. To address these issues, we propose GRExplainer, the first universal, efficient, and user-friendly explanation method for TGNNs. GRExplainer extracts node sequences as a unified feature representation, making it independent of specific input formats and thus applicable to both snapshot-based and event-based TGNNs (the major types of TGNNs). By utilizing breadth-first search and temporal information to construct input node sequences, GRExplainer reduces redundant computation and improves efficiency. To enhance user-friendliness, we design a generative model based on Recurrent Neural Networks (RNNs), enabling automated and continuous explanation generation. Experiments on six real-world datasets with three target TGNNs show that GRExplainer outperforms existing baseline methods in generality, efficiency, and user-friendliness.
- Abstract(参考訳): 動的グラフは進化する現実世界のネットワークを表現するために広く使われている。
テンポラルグラフニューラルネットワーク(TGNN)は、そのようなグラフを処理する強力なツールとして登場したが、透明性と説明可能性の欠如により、実践的な採用が制限されている。
TGNNの説明可能性の研究はまだ初期段階にあり、いくつかの重要な問題に直面している。
(i)現在のメソッドは、特定のTGNNタイプに合わせて調整され、一般性を制限する。
(II)計算コストが高いため,大規模ネットワークには適さない。
三 しばしば説明の構造的な接続を見落とし、事前の知識を必要とし、ユーザフレンドリさを減らします。
そこで本研究では,TGNNの汎用的,効率的,ユーザフレンドリな説明手法であるGRExplainerを提案する。
GRExplainerはノードシーケンスを統一された特徴表現として抽出し、特定の入力形式に依存せず、スナップショットベースのTGNNとイベントベースのTGNN(主要なTGNN)の両方に適用できる。
広帯域探索と時間情報を利用して入力ノードシーケンスを構築することで、GRExplainerは冗長な計算を減らし、効率を向上する。
ユーザフレンドリ性を高めるために、リカレントニューラルネットワーク(RNN)に基づく生成モデルを設計し、自動的かつ連続的な説明生成を可能にする。
3つのターゲットTGNNを持つ6つの実世界のデータセットの実験により、GRExplainerは、汎用性、効率性、ユーザフレンドリー性において、既存のベースラインメソッドよりも優れていることが示されている。
関連論文リスト
- ScaleGNN: Towards Scalable Graph Neural Networks via Adaptive High-order Neighboring Feature Fusion [73.85920403511706]
スケーラブルで効果的なグラフ学習のためのマルチホップノード機能を適応的に融合する新しいフレームワークであるScaleGNNを提案する。
予測精度と計算効率の両面で,ScaleGNNは最先端のGNNよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2025-04-22T14:05:11Z) - Graph as a feature: improving node classification with non-neural graph-aware logistic regression [2.952177779219163]
Graph-aware Logistic Regression (GLR) はノード分類タスク用に設計された非神経モデルである。
GNNにアクセスできる情報のごく一部しか使わない従来のグラフアルゴリズムとは異なり、提案モデルではノードの特徴とエンティティ間の関係を同時に活用する。
論文 参考訳(メタデータ) (2024-11-19T08:32:14Z) - Efficient Topology-aware Data Augmentation for High-Degree Graph Neural Networks [2.7523980737007414]
高次グラフ(HDG)上のグラフニューラルネットワーク(GNN)のための効率的かつ効果的なフロントマウントデータ拡張フレームワークであるTADを提案する。
内部では、(i)構造埋め込みによる機能拡張と(ii)トポロジと属性対応グラフのスパース化という、2つの重要なモジュールが含まれている。
TADAは、ノード分類の観点から8つの実ホモ親和性/ヘテロ親和性HDG上でのメインストリームGNNモデルの予測性能を大幅に改善する。
論文 参考訳(メタデータ) (2024-06-08T14:14:19Z) - GGNNs : Generalizing GNNs using Residual Connections and Weighted
Message Passing [0.0]
GNNはグラフ内の関係やパターンを捕捉し、効果的な学習と予測タスクを可能にする。
GNNの一般化力は、層間のメッセージパッシング機構に起因すると一般的に信じられている。
提案手法は,各ノードにアキュミュレートする前にメッセージを重み付けし,Residual接続を追加することによって,メッセージパッシング機構をさらに改良する。
論文 参考訳(メタデータ) (2023-11-26T22:22:38Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Tackling Oversmoothing of GNNs with Contrastive Learning [35.88575306925201]
グラフニューラルネットワーク(GNN)は、グラフデータと表現学習能力の包括的な関係を統合する。
オーバースムーシングはノードの最終的な表現を識別不能にし、ノード分類とリンク予測性能を劣化させる。
本稿では,TGCL(Topology-Guided Graph Contrastive Layer)を提案する。
論文 参考訳(メタデータ) (2021-10-26T15:56:16Z) - Binary Graph Neural Networks [69.51765073772226]
グラフニューラルネットワーク(gnns)は、不規則データに対する表現学習のための強力で柔軟なフレームワークとして登場した。
本稿では,グラフニューラルネットワークのバイナライゼーションのための異なる戦略を提示し,評価する。
モデルの慎重な設計とトレーニングプロセスの制御によって、バイナリグラフニューラルネットワークは、挑戦的なベンチマークの精度において、適度なコストでトレーニングできることを示しています。
論文 参考訳(メタデータ) (2020-12-31T18:48:58Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - Hierarchical Message-Passing Graph Neural Networks [12.207978823927386]
本稿では,新しい階層型メッセージパッシンググラフニューラルネットワークフレームワークを提案する。
鍵となるアイデアは、フラットグラフ内のすべてのノードをマルチレベルなスーパーグラフに再編成する階層構造を生成することである。
階層型コミュニティ対応グラフニューラルネットワーク(HC-GNN)と呼ばれる,このフレームワークを実装した最初のモデルを提案する。
論文 参考訳(メタデータ) (2020-09-08T13:11:07Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
グラフニューラルネットワーク(GNN)はグラフ表現学習において大きな成功を収めている。
GNNは、実際には非常に異なるグラフ部分構造に対して同一の表現を生成する。
より強力なGNNは、最近高階試験を模倣して提案され、基礎となるグラフ構造を疎結合にできないため、非効率である。
本稿では,グラフ表現学習の新たなクラスとして距離分解(DE)を提案する。
論文 参考訳(メタデータ) (2020-08-31T23:15:40Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。