論文の概要: A general framework for deep learning
- arxiv url: http://arxiv.org/abs/2512.23425v1
- Date: Mon, 29 Dec 2025 12:42:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-30 22:37:30.495861
- Title: A general framework for deep learning
- Title(参考訳): ディープラーニングのための一般的なフレームワーク
- Authors: William Kengne, Modou Wade,
- Abstract要約: 我々は、一般化されたバーンスタイン型不等式を満たすデータからフレームワークを実行する。
これらの推定器のそれぞれについて、ハルダーの滑らかな函数と構成ハルダー関数のクラスに対する予測余剰リスクの境界が確立される。
NPDNNとSPDNNの両方の推定器は、多くの古典的設定において、最小限の最適(対数係数まで)であることが示されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper develops a general approach for deep learning for a setting that includes nonparametric regression and classification. We perform a framework from data that fulfills a generalized Bernstein-type inequality, including independent, $φ$-mixing, strongly mixing and $\mathcal{C}$-mixing observations. Two estimators are proposed: a non-penalized deep neural network estimator (NPDNN) and a sparse-penalized deep neural network estimator (SPDNN). For each of these estimators, bounds of the expected excess risk on the class of Hölder smooth functions and composition Hölder functions are established. Applications to independent data, as well as to $φ$-mixing, strongly mixing, $\mathcal{C}$-mixing processes are considered. For each of these examples, the upper bounds of the expected excess risk of the proposed NPDNN and SPDNN predictors are derived. It is shown that both the NPDNN and SPDNN estimators are minimax optimal (up to a logarithmic factor) in many classical settings.
- Abstract(参考訳): 本稿では,非パラメトリック回帰と分類を含む設定に対して,ディープラーニングの一般的なアプローチを開発する。
我々は、独立性、$φ$-mixing、強混合および$\mathcal{C}$-mixing観測を含む、一般化したバーンスタイン型不等式を満たすデータからフレームワークを実行する。
2つの推定器が提案され、非ペン化ディープニューラルネットワーク推定器(NPDNN)とスパースペン化ディープニューラルネットワーク推定器(SPDNN)である。
これらの推定器のそれぞれについて、ヘルダー滑らかな函数のクラスと構成ヘルダー函数に対する期待過剰リスクの境界が確立される。
独立データへの応用、および$φ$-mixingへの強い混合、$\mathcal{C}$-mixingプロセスの検討。
これらの例のそれぞれについて,提案したNPDNNとSPDNN予測器の余剰リスクの上限を導出する。
NPDNNとSPDNNの両方の推定器は、多くの古典的設定において、最小限の最適(対数係数まで)であることが示されている。
関連論文リスト
- Deep learning from strongly mixing observations: Sparse-penalized regularization and minimax optimality [0.0]
ディープニューラルネットワーク予測器のスパースペナル化正規化について検討する。
正方形と幅広い損失関数を扱う。
論文 参考訳(メタデータ) (2024-06-12T15:21:51Z) - Sample-efficient Learning of Infinite-horizon Average-reward MDPs with General Function Approximation [53.17668583030862]
一般関数近似の文脈において,無限水平平均逆マルコフ決定過程(AMDP)について検討する。
最適化最適化(LOOP)と呼ばれる新しいアルゴリズムフレームワークを提案する。
我々は LOOP がサブ線形 $tildemathcalO(mathrmpoly(d, mathrmsp(V*)) sqrtTbeta )$ regret を達成することを示す。
論文 参考訳(メタデータ) (2024-04-19T06:24:22Z) - Benign Overfitting in Deep Neural Networks under Lazy Training [72.28294823115502]
データ分布が適切に分離された場合、DNNは分類のためのベイズ最適テスト誤差を達成できることを示す。
よりスムーズな関数との補間により、より一般化できることを示す。
論文 参考訳(メタデータ) (2023-05-30T19:37:44Z) - Information Bottleneck Analysis of Deep Neural Networks via Lossy Compression [37.69303106863453]
Information Bottleneck(IB)原則は、ディープニューラルネットワーク(DNN)のトレーニングプロセスを分析するための情報理論フレームワークを提供する。
本稿では,一般NNのICB解析を行うためのフレームワークを提案する。
また,MI力学の新たな特徴を明らかにするため,実規模に近いISB解析を行う。
論文 参考訳(メタデータ) (2023-05-13T21:44:32Z) - Penalized deep neural networks estimator with general loss functions
under weak dependence [0.0]
本稿では、弱い依存過程を学習するために、スパースペン化ディープニューラルネットワーク予測器を実行する。
いくつかのシミュレーション結果が提供され、ヴィットーリア大都市圏の粒子状物質予測への応用も検討されている。
論文 参考訳(メタデータ) (2023-05-10T15:06:53Z) - Sparse-penalized deep neural networks estimator under weak dependence [0.0]
我々は、$psi$-weakly依存プロセスの非パラメトリック回帰と分類問題を考察する。
スパースディープニューラルネットワークのペナル化推定を行う。
論文 参考訳(メタデータ) (2023-03-02T16:53:51Z) - Constraining cosmological parameters from N-body simulations with
Variational Bayesian Neural Networks [0.0]
乗法正規化フロー (MNFs) はBNNのパラメータの近似後流の族である。
我々は,標準BNNとフリップアウト推定器についてMNFの比較を行った。
MNFは、変動近似によって導入されたバイアスを緩和する真の後部へのより現実的な予測分布を提供する。
論文 参考訳(メタデータ) (2023-01-09T16:07:48Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - Towards an Understanding of Benign Overfitting in Neural Networks [104.2956323934544]
現代の機械学習モデルは、しばしば膨大な数のパラメータを使用し、通常、トレーニング損失がゼロになるように最適化されている。
ニューラルネットワークの2層構成において、これらの良質な過適合現象がどのように起こるかを検討する。
本稿では,2層型ReLUネットワーク補間器を極小最適学習率で実現可能であることを示す。
論文 参考訳(メタデータ) (2021-06-06T19:08:53Z) - Sharp Statistical Guarantees for Adversarially Robust Gaussian
Classification [54.22421582955454]
逆向きに頑健な分類の過剰リスクに対する最適ミニマックス保証の最初の結果を提供する。
結果はAdvSNR(Adversarial Signal-to-Noise Ratio)の項で述べられており、これは標準的な線形分類と逆数設定との類似の考え方を一般化している。
論文 参考訳(メタデータ) (2020-06-29T21:06:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。