論文の概要: Fuzzy-Logic and Deep Learning for Environmental Condition-Aware Road Surface Classification
- arxiv url: http://arxiv.org/abs/2512.23436v1
- Date: Mon, 29 Dec 2025 12:54:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-30 22:37:30.502042
- Title: Fuzzy-Logic and Deep Learning for Environmental Condition-Aware Road Surface Classification
- Title(参考訳): 環境条件を考慮した道路表面分類のためのファジィ論理と深層学習
- Authors: Mustafa Demetgul, Sanja Lazarova Molnar,
- Abstract要約: 本稿では,気象条件データと道路表面条件データに基づくリアルタイムシステムを提案する。
また、加速度やカメラ画像を用いて、天気や日時に応じて道路表面を分類することも提案されている。
- 参考スコア(独自算出の注目度): 3.4806267677524896
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Monitoring states of road surfaces provides valuable information for the planning and controlling vehicles and active vehicle control systems. Classical road monitoring methods are expensive and unsystematic because they require time for measurements. This article proposes an real time system based on weather conditional data and road surface condition data. For this purpose, we collected data with a mobile phone camera on the roads around the campus of the Karlsruhe Institute of Technology. We tested a large number of different image-based deep learning algorithms for road classification. In addition, we used road acceleration data along with road image data for training by using them as images. We compared the performances of acceleration-based and camera image-based approaches. The performances of the simple Alexnet, LeNet, VGG, and Resnet algorithms were compared as deep learning algorithms. For road condition classification, 5 classes were considered: asphalt, damaged asphalt, gravel road, damaged gravel road, pavement road and over 95% accuracy performance was achieved. It is also proposed to use the acceleration or the camera image to classify the road surface according to the weather and the time of day using fuzzy logic.
- Abstract(参考訳): 道路面のモニタリング状態は、車両の計画と制御およびアクティブな車両制御システムに貴重な情報を提供する。
古典的な道路監視手法は、測定に時間を要するため高価で非体系的である。
本稿では,気象条件データと道路表面条件データに基づくリアルタイムシステムを提案する。
この目的で我々は、カールスルーエ工科大学のキャンパス周辺の道路で携帯電話カメラでデータを収集した。
道路分類のための画像ベース深層学習アルゴリズムを多数試験した。
また,道路加速度データと道路画像データを併用して訓練を行った。
加速度ベースおよびカメラ画像ベースアプローチの性能を比較した。
単純なAlexnet、LeNet、VGG、Resnetのアルゴリズムの性能をディープラーニングアルゴリズムと比較した。
道路条件分類では,アスファルト,損傷アスファルト,砂利道路,損傷した砂利道路,舗装道路,95%以上の精度を実現した。
また, 加速度やカメラ画像を用いて, ファジィ論理を用いて, 天気や時刻に応じて道路表面を分類する手法を提案する。
関連論文リスト
- AVOID: The Adverse Visual Conditions Dataset with Obstacles for Driving Scene Understanding [48.97660297411286]
シミュレーション環境におけるリアルタイム障害物検出のための新しいデータセットであるAVOIDを紹介する。
AVOIDは、様々な天候と時間条件下で捕獲された各経路に沿って、予期せぬ道路障害物からなる。
各画像は、対応するセマンティックマップと深度マップ、生およびセマンティックLiDARデータ、およびウェイポイントと結合される。
論文 参考訳(メタデータ) (2025-12-29T05:34:26Z) - RoadRunner -- Learning Traversability Estimation for Autonomous Off-road Driving [13.101416329887755]
我々は、カメラとLiDARセンサーの入力から直接地形変動を予測できるフレームワークであるRoadRunnerと、標高マップを提示する。
RoadRunnerは、センサ情報、不確実性の処理、コンテキスト情報による予測の生成を融合させることで、信頼性の高い自律ナビゲーションを可能にする。
我々は,非構造砂漠環境を通した複数の現実の運転シナリオにおいて,安全かつ信頼性の高いオフロードナビゲーションを実現する上で,ロードランナーの有効性を実証する。
論文 参考訳(メタデータ) (2024-02-29T16:47:54Z) - RSRD: A Road Surface Reconstruction Dataset and Benchmark for Safe and
Comfortable Autonomous Driving [67.09546127265034]
道路表面の再構築は、車両の走行計画と制御システムの解析と予測を促進するのに役立つ。
我々は,様々な運転条件下で,特定のプラットフォームで収集した実世界,高解像度,高精度のデータセットであるRoad Surface Reconstructionデータセットを紹介した。
約16,000対のステレオ画像、原点雲、地中深度・不均等地図を含む一般的な道路形態を網羅している。
論文 参考訳(メタデータ) (2023-10-03T17:59:32Z) - Real Time Monocular Vehicle Velocity Estimation using Synthetic Data [78.85123603488664]
移動車に搭載されたカメラから車両の速度を推定する問題を考察する。
そこで本研究では,まずオフ・ザ・シェルフ・トラッカーを用いて車両バウンディングボックスを抽出し,その後,小型ニューラルネットワークを用いて車両速度を回帰する2段階のアプローチを提案する。
論文 参考訳(メタデータ) (2021-09-16T13:10:27Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
ライダーベースの物体検出器は、自動運転車のような自律ナビゲーションシステムにおいて、3D知覚パイプラインの重要な部分である。
降雨、雪、霧などの悪天候に敏感で、信号-雑音比(SNR)と信号-背景比(SBR)が低下している。
論文 参考訳(メタデータ) (2021-07-14T21:10:47Z) - Road Roughness Estimation Using Machine Learning [0.0]
自動車の垂直加速度と速度を用いた道路粗さ予測のための機械学習パイプラインを提案する。
その結果,従来の乗用車に搭載された車内センサを用いて,道路の粗さを正確に予測できることが示唆された。
論文 参考訳(メタデータ) (2021-07-02T17:37:55Z) - Deep traffic light detection by overlaying synthetic context on
arbitrary natural images [49.592798832978296]
深部交通光検出器のための人工的な交通関連トレーニングデータを生成する手法を提案する。
このデータは、任意の画像背景の上に偽のトラフィックシーンをブレンドするために、基本的な非現実的なコンピュータグラフィックスを用いて生成される。
また、交通信号データセットの本質的なデータ不均衡問題にも対処し、主に黄色い状態のサンプルの少なさによって引き起こされる。
論文 参考訳(メタデータ) (2020-11-07T19:57:22Z) - BoMuDANet: Unsupervised Adaptation for Visual Scene Understanding in
Unstructured Driving Environments [54.22535063244038]
非構造交通環境における視覚的シーン理解のための教師なし適応手法を提案する。
本手法は,車,トラック,二輪車,三輪車,歩行者からなる密集・異種交通を伴う非構造現実シナリオを対象としたものである。
論文 参考訳(メタデータ) (2020-09-22T08:25:44Z) - DAWN: Vehicle Detection in Adverse Weather Nature Dataset [4.09920839425892]
本研究では,DAWNと呼ばれる各種気象条件下で収集した実世界の画像からなる新しいデータセットを提案する。
このデータセットは、実際の交通環境から1000枚の画像を集め、霧、雪、雨、砂嵐の4つの天候条件に分けられる。
このデータは,車両検知システムの性能に及ぼす悪天候の影響の解明に有効である。
論文 参考訳(メタデータ) (2020-08-12T15:48:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。