論文の概要: Generalized Regularized Evidential Deep Learning Models: Theory and Comprehensive Evaluation
- arxiv url: http://arxiv.org/abs/2512.23753v1
- Date: Sat, 27 Dec 2025 11:26:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-01 23:27:28.139125
- Title: Generalized Regularized Evidential Deep Learning Models: Theory and Comprehensive Evaluation
- Title(参考訳): 一般化正規化証拠深層学習モデル:理論と包括的評価
- Authors: Deep Shankar Pandey, Hyomin Choi, Qi Yu,
- Abstract要約: 証拠深層学習モデルは、学習された証拠を用いてきめ細かい不確実性を定量化することができる。
我々は、一貫したエビデンス更新のための代替経路を提供するために、アクティベーション関数の一般ファミリーとそれに対応する顕在正則化器を開発する。
- 参考スコア(独自算出の注目度): 20.241694857723218
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Evidential deep learning (EDL) models, based on Subjective Logic, introduce a principled and computationally efficient way to make deterministic neural networks uncertainty-aware. The resulting evidential models can quantify fine-grained uncertainty using learned evidence. However, the Subjective-Logic framework constrains evidence to be non-negative, requiring specific activation functions whose geometric properties can induce activation-dependent learning-freeze behavior: a regime where gradients become extremely small for samples mapped into low-evidence regions. We theoretically characterize this behavior and analyze how different evidential activations influence learning dynamics. Building on this analysis, we design a general family of activation functions and corresponding evidential regularizers that provide an alternative pathway for consistent evidence updates across activation regimes. Extensive experiments on four benchmark classification problems (MNIST, CIFAR-10, CIFAR-100, and Tiny-ImageNet), two few-shot classification problems, and blind face restoration problem empirically validate the developed theory and demonstrate the effectiveness of the proposed generalized regularized evidential models.
- Abstract(参考訳): Evidential Deep Learning(EDL)モデルは、主観的論理に基づいて、決定論的ニューラルネットワークの不確実性を認識するための原理的かつ計算的に効率的な方法を導入している。
結果の明らかなモデルは、学習された証拠を用いてきめ細かい不確実性を定量化することができる。
しかし、主観論理フレームワークは証拠を非負に制約し、幾何学的性質がアクティベーションに依存した学習凍結行動を引き起こすような特定のアクティベーション関数を必要とする:低証拠領域にマッピングされたサンプルに対して勾配が極端に小さくなる状態である。
理論的には、この振る舞いを特徴づけ、明らかなアクティベーションの違いが学習力学に与える影響を分析する。
この分析に基づいて、活性化系全体にわたる一貫したエビデンス更新のための代替経路を提供する、活性化関数の一般ファミリーとそれに対応する顕在正則化器を設計する。
4つのベンチマーク分類問題(MNIST, CIFAR-10, CIFAR-100, Tiny-ImageNet), 数発の分類問題, ブラインドフェイス復元問題(ブラインドフェイス復元問題)の広範な実験により, 開発理論を実証的に検証し, 提案した一般化正規化証明モデルの有効性を実証した。
関連論文リスト
- Did Models Sufficient Learn? Attribution-Guided Training via Subset-Selected Counterfactual Augmentation [61.248535801314375]
Subset-Selected Counterfactual Augmentation (SS-CA)
我々は,モデル予測を選択的に変更可能な最小空間領域集合を識別するために,対実的LIMAを開発した。
実験により,SS-CAは分布内テストデータ(ID)の一般化を改善し,分布外ベンチマーク(OOD)において優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2025-11-15T08:39:22Z) - Causality can systematically address the monsters under the bench(marks) [64.36592889550431]
ベンチマークはさまざまなバイアス、アーティファクト、リークに悩まされている。
モデルは、調査の不十分な障害モードのため、信頼できない振る舞いをする可能性がある。
因果関係はこれらの課題を体系的に解決するための 理想的な枠組みを提供します
論文 参考訳(メタデータ) (2025-02-07T17:01:37Z) - Reactive Model Correction: Mitigating Harm to Task-Relevant Features via Conditional Bias Suppression [12.44857030152608]
ディープニューラルネットワークは、高リスクアプリケーションにおいて致命的な結果をもたらす可能性のあるトレーニングデータにおいて、学習と急激な相関に依存する傾向があります。
余剰訓練を伴わずにポストホックに適用できる有害な特徴に対するモデル依存を抑制するための様々なアプローチが提案されている。
本稿では,モデル由来の知識とeXplainable Artificial Intelligence(XAI)の洞察に基づくリアクティブアプローチを提案する。
論文 参考訳(メタデータ) (2024-04-15T09:16:49Z) - Unifying Self-Supervised Clustering and Energy-Based Models [9.3176264568834]
自己教師付き学習と生成モデルとの間には,原則的な関連性を確立する。
シンボル接地問題の単純かつ非自明なインスタンス化に対処するために,我々の解法をニューロシンボリックな枠組みに統合できることが示される。
論文 参考訳(メタデータ) (2023-12-30T04:46:16Z) - On the Dynamics Under the Unhinged Loss and Beyond [104.49565602940699]
我々は、閉形式力学を解析するための数学的機会を提供する、簡潔な損失関数であるアンヒンジド・ロスを導入する。
アンヒンジされた損失は、時間変化学習率や特徴正規化など、より実践的なテクニックを検討することができる。
論文 参考訳(メタデータ) (2023-12-13T02:11:07Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
補間系の性能に影響を及ぼす要因を特徴付ける一般モデルのクラスに対して,PAC-Bayes境界がいかに得られるかを示す。
オーバーパラメータ化モデルに対するテスト誤差が、モデルとパラメータの初期化スキームの組み合わせによって課される暗黙の正規化の品質に依存するかの定量化を行う。
論文 参考訳(メタデータ) (2023-11-13T01:48:08Z) - Learn to Accumulate Evidence from All Training Samples: Theory and
Practice [7.257751371276488]
Evidential Deep Learningは、決定論的ニューラルネットワークの不確実性を認識するための、原則的かつ計算的に効率的な方法を提供する。
既存の明らかなアクティベーション関数はゼロエビデンス領域を生成するため、モデルがそのような領域に落ちてくるトレーニングサンプルから学ぶことができない。
我々の理論的基盤に基づく顕在的活性化関数のより深い分析は、新しい正則化器の設計を刺激する。
論文 参考訳(メタデータ) (2023-06-19T18:27:12Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - Gradient Starvation: A Learning Proclivity in Neural Networks [97.02382916372594]
グラディエント・スターベーションは、タスクに関連する機能のサブセットのみをキャプチャすることで、クロスエントロピー損失を最小化するときに発生する。
この研究は、ニューラルネットワークにおけるそのような特徴不均衡の出現に関する理論的説明を提供する。
論文 参考訳(メタデータ) (2020-11-18T18:52:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。