論文の概要: MGML: A Plug-and-Play Meta-Guided Multi-Modal Learning Framework for Incomplete Multimodal Brain Tumor Segmentation
- arxiv url: http://arxiv.org/abs/2512.23936v1
- Date: Tue, 30 Dec 2025 01:37:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-01 23:27:28.25312
- Title: MGML: A Plug-and-Play Meta-Guided Multi-Modal Learning Framework for Incomplete Multimodal Brain Tumor Segmentation
- Title(参考訳): MGML:不完全なマルチモーダル脳腫瘍分類のためのモジュール・アンド・プレイ型マルチモーダル学習フレームワーク
- Authors: Yulong Zou, Bo Liu, Cun-Jing Zheng, Yuan-ming Geng, Siyue Li, Qiankun Zuo, Shuihua Wang, Yudong Zhang, Jin Hong,
- Abstract要約: 臨床実践では、マルチモーダルMRIデータはしばしば不完全であり、利用可能な情報を十分に活用することは困難である。
本稿では,2つのコンポーネントからなるメタガイド型マルチモーダル学習(MGML)フレームワークを提案する。
利用可能なモダリティに基づいて適応型ソフトラベル監視信号を生成することにより、Meta-AMFはよりコヒーレントなマルチモーダル融合を促進する。
- 参考スコア(独自算出の注目度): 22.18722266135522
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Leveraging multimodal information from Magnetic Resonance Imaging (MRI) plays a vital role in lesion segmentation, especially for brain tumors. However, in clinical practice, multimodal MRI data are often incomplete, making it challenging to fully utilize the available information. Therefore, maximizing the utilization of this incomplete multimodal information presents a crucial research challenge. We present a novel meta-guided multi-modal learning (MGML) framework that comprises two components: meta-parameterized adaptive modality fusion and consistency regularization module. The meta-parameterized adaptive modality fusion (Meta-AMF) enables the model to effectively integrate information from multiple modalities under varying input conditions. By generating adaptive soft-label supervision signals based on the available modalities, Meta-AMF explicitly promotes more coherent multimodal fusion. In addition, the consistency regularization module enhances segmentation performance and implicitly reinforces the robustness and generalization of the overall framework. Notably, our approach does not alter the original model architecture and can be conveniently integrated into the training pipeline for end-to-end model optimization. We conducted extensive experiments on the public BraTS2020 and BraTS2023 datasets. Compared to multiple state-of-the-art methods from previous years, our method achieved superior performance. On BraTS2020, for the average Dice scores across fifteen missing modality combinations, building upon the baseline, our method obtained scores of 87.55, 79.36, and 62.67 for the whole tumor (WT), the tumor core (TC), and the enhancing tumor (ET), respectively. We have made our source code publicly available at https://github.com/worldlikerr/MGML.
- Abstract(参考訳): 磁気共鳴イメージング(MRI)によるマルチモーダル情報の活用は、特に脳腫瘍において、病変のセグメンテーションにおいて重要な役割を担っている。
しかし、臨床実践においては、マルチモーダルMRIデータはしばしば不完全であり、利用可能な情報を十分に活用することは困難である。
したがって、この不完全なマルチモーダル情報の利用を最大化することは、重要な研究課題である。
本稿では,メタパラメータ化適応モーダリティ融合と整合正則化モジュールの2つのコンポーネントからなる,メタガイド型多モード学習(MGML)フレームワークを提案する。
メタパラメータ化適応モーダリティ融合(Meta-AMF)により、入力条件の異なる複数のモーダリティからの情報を効果的に統合することができる。
利用可能なモダリティに基づいて適応型ソフトラベル監視信号を生成することにより、Meta-AMFはよりコヒーレントなマルチモーダル融合を促進する。
さらに、一貫性の正規化モジュールはセグメンテーション性能を高め、全体的なフレームワークの堅牢性と一般化を暗黙的に強化する。
特に、私たちのアプローチはオリジナルのモデルアーキテクチャを変更しておらず、エンドツーエンドモデルの最適化のためのトレーニングパイプラインに便利に統合することができます。
我々はパブリックなBraTS2020とBraTS2023データセットについて広範な実験を行った。
過去の複数の最先端手法と比較して,本手法は優れた性能を示した。
BraTS2020では,全腫瘍 (WT) , 腫瘍コア (TC) , 造影腫瘍 (ET) の合計スコアが87.55, 79.36, 62.67であった。
ソースコードはhttps://github.com/worldlikerr/MGML.comで公開しています。
関連論文リスト
- Modality-Specific Enhancement and Complementary Fusion for Semi-Supervised Multi-Modal Brain Tumor Segmentation [6.302779966909783]
医用画像セグメンテーションのための新しい半教師付きマルチモーダルフレームワークを提案する。
モダリティ固有のエンハンシングモジュール(MEM)を導入し、各モダリティに意味的なユニークな手がかりを強化する。
また,学習可能な相補的情報融合(CIF)モジュールを導入し,モダリティ間の相補的知識を適応的に交換する。
論文 参考訳(メタデータ) (2025-12-10T16:15:17Z) - impuTMAE: Multi-modal Transformer with Masked Pre-training for Missing Modalities Imputation in Cancer Survival Prediction [75.43342771863837]
我々は,効率的なマルチモーダル事前学習戦略を備えた新しいトランスフォーマーに基づくエンドツーエンドアプローチである impuTMAE を紹介する。
マスクされたパッチを再構築することで、モダリティの欠如を同時に示唆しながら、モダリティ間の相互作用とモダリティ内相互作用を学習する。
本モデルは,TGA-GBM/LGGとBraTSデータセットを用いたグリオーマ生存予測のために,異種不完全データに基づいて事前訓練を行った。
論文 参考訳(メタデータ) (2025-08-08T10:01:16Z) - MAST-Pro: Dynamic Mixture-of-Experts for Adaptive Segmentation of Pan-Tumors with Knowledge-Driven Prompts [54.915060471994686]
MAST-Proは,ダイナミックなMixture-of-Experts(D-MoE)とパン腫瘍セグメンテーションのための知識駆動プロンプトを統合した新しいフレームワークである。
具体的には、テキストと解剖学的プロンプトは、腫瘍表現学習を導くドメイン固有の事前情報を提供し、D-MoEは、ジェネリックと腫瘍固有の特徴学習のバランスをとる専門家を動的に選択する。
マルチ解剖学的腫瘍データセットの実験では、MAST-Proは最先端のアプローチよりも優れており、トレーニング可能なパラメータを91.04%削減し、平均改善の5.20%を達成している。
論文 参考訳(メタデータ) (2025-03-18T15:39:44Z) - Dynamic Multimodal Fusion via Meta-Learning Towards Micro-Video Recommendation [97.82707398481273]
メタマルチモーダルフュージョン(MetaMMF)と呼ばれるメタラーニングに基づく新しいマルチモーダルフュージョンフレームワークを開発する。
メタMMFは、入力タスクのマルチモーダル特徴から抽出されたメタ情報に基づいて、メタラーナを介して、アイテム固有の融合関数としてニューラルネットワークをパラメータ化する。
我々は3つのベンチマークデータセットに対して広範な実験を行い、最先端のマルチモーダルレコメンデーションモデルに対する大幅な改善を実証した。
論文 参考訳(メタデータ) (2025-01-13T07:51:43Z) - A Multimodal Feature Distillation with CNN-Transformer Network for Brain Tumor Segmentation with Incomplete Modalities [15.841483814265592]
本稿では,CNN-Transformer Hybrid Network (MCTSeg) を用いたマルチモーダル特徴蒸留法を提案する。
CNN-Transformer ネットワークと Transformer の畳み込みブロックを併用して提案するモジュールの重要性について検討した。
論文 参考訳(メタデータ) (2024-04-22T09:33:44Z) - NestedFormer: Nested Modality-Aware Transformer for Brain Tumor
Segmentation [29.157465321864265]
そこで我々は,Nested Modality-Aware Transformer (NestedFormer) を提案する。
変換器をベースとしたマルチエンコーダと単一デコーダ構造に基づいて,異なるモードの高レベル表現に対してネストしたマルチモーダル融合を行う。
論文 参考訳(メタデータ) (2022-08-31T14:04:25Z) - A Novel Unified Conditional Score-based Generative Framework for
Multi-modal Medical Image Completion [54.512440195060584]
我々は、スコアベース生成モデル(SGM)を活用するために、統一多モードスコアベース生成モデル(UMM-CSGM)を提案する。
UMM-CSGMは、新しいマルチインマルチアウトコンディションスコアネットワーク(mm-CSN)を用いて、クロスモーダル条件分布の包括的集合を学習する。
BraTS19データセットの実験により、UMM-CSGMは腫瘍誘発病変における不均一な増強と不規則な領域をより確実に合成できることが示された。
論文 参考訳(メタデータ) (2022-07-07T16:57:21Z) - mmFormer: Multimodal Medical Transformer for Incomplete Multimodal
Learning of Brain Tumor Segmentation [38.22852533584288]
3つの主要要素を持つ不完全なマルチモーダル学習のための新しい医療変換器(mmFormer)を提案する。
提案した mmFormer は, ほぼすべての不完全様相のサブセット上で, 不完全多モード脳腫瘍のセグメント化の最先端手法より優れている。
論文 参考訳(メタデータ) (2022-06-06T08:41:56Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
本稿では, マルチモーダルMRIデータから脳腫瘍を抽出するクロスモーダルディープ・フィーチャーラーニング・フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにまたがる豊富なパターンをマイニングすることだ。
on the BraTS benchmarks, this proposed cross-modality deep feature learning framework could effective improve the brain tumor segmentation performance。
論文 参考訳(メタデータ) (2022-01-07T07:46:01Z) - Modality-aware Mutual Learning for Multi-modal Medical Image
Segmentation [12.308579499188921]
肝臓がんは世界中で最も多いがんの1つである。
本稿では,マルチモーダルCT画像の統合による肝腫瘍切除の自動化に焦点をあてる。
そこで本研究では,肝腫瘍セグメント化を効果的かつ堅牢にするための新たな相互学習(ML)戦略を提案する。
論文 参考訳(メタデータ) (2021-07-21T02:24:31Z) - Robust Multimodal Brain Tumor Segmentation via Feature Disentanglement
and Gated Fusion [71.87627318863612]
画像モダリティの欠如に頑健な新しいマルチモーダルセグメンテーションフレームワークを提案する。
我々のネットワークは、入力モードをモダリティ固有の外観コードに分解するために、特徴不整合を用いる。
我々は,BRATSチャレンジデータセットを用いて,重要なマルチモーダル脳腫瘍セグメンテーション課題に対する本手法の有効性を検証した。
論文 参考訳(メタデータ) (2020-02-22T14:32:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。