論文の概要: Mask-Conditioned Voxel Diffusion for Joint Geometry and Color Inpainting
- arxiv url: http://arxiv.org/abs/2601.00368v1
- Date: Thu, 01 Jan 2026 15:11:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-05 15:04:33.406022
- Title: Mask-Conditioned Voxel Diffusion for Joint Geometry and Color Inpainting
- Title(参考訳): マスクを付加したVoxel Diffusionによる関節形状とカラーインペインティング
- Authors: Aarya Sumuk,
- Abstract要約: 本稿では,文化遺産のデジタル復元を動機とした,損傷した3Dオブジェクトの接合形状とカラーインペインティングの枠組みを提案する。
2D畳み込みネットワークは、酸化物から抽出されたRGBスライス上の損傷マスクを予測し、これらの予測を体積マスクに集約する。
第2段階では、拡散に基づく3D U-Netは、ボクセル格子に直接マスク条件の塗布を行い、観察された領域を保存しながら幾何と色を再構成する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a lightweight two-stage framework for joint geometry and color inpainting of damaged 3D objects, motivated by the digital restoration of cultural heritage artifacts. The pipeline separates damage localization from reconstruction. In the first stage, a 2D convolutional network predicts damage masks on RGB slices extracted from a voxelized object, and these predictions are aggregated into a volumetric mask. In the second stage, a diffusion-based 3D U-Net performs mask-conditioned inpainting directly on voxel grids, reconstructing geometry and color while preserving observed regions. The model jointly predicts occupancy and color using a composite objective that combines occupancy reconstruction with masked color reconstruction and perceptual regularization. We evaluate the approach on a curated set of textured artifacts with synthetically generated damage using standard geometric and color metrics. Compared to symmetry-based baselines, our method produces more complete geometry and more coherent color reconstructions at a fixed 32^3 resolution. Overall, the results indicate that explicit mask conditioning is a practical way to guide volumetric diffusion models for joint 3D geometry and color inpainting.
- Abstract(参考訳): 文化遺産のデジタル修復を動機とした,損傷した3次元オブジェクトの接合形状とカラーインペイントのための軽量な2段階フレームワークを提案する。
パイプラインは、損傷の局所化と復元を分離する。
第1段階では、2D畳み込みネットワークが酸化物から抽出したRGBスライス上の損傷マスクを予測し、これらの予測を体積マスクに集約する。
第2段階では、拡散に基づく3D U-Netは、ボクセル格子に直接マスク条件の塗布を行い、観察された領域を保存しながら幾何と色を再構成する。
このモデルは、占有率再構成とマスク色再構成と知覚正規化を組み合わせた複合目的を用いて、占有率と着色率を共同予測する。
本研究では, 標準的な幾何学的, 色彩的指標を用いて, 合成的損傷を伴う集合的テクスチャ人工物に対するアプローチを評価する。
対称性に基づくベースラインと比較すると、固定された32^3の解像度で、より完全な幾何とよりコヒーレントな色再現を生成する。
以上の結果から,明示的なマスク条件付けは,関節3次元形状とカラーインペインティングのための体積拡散モデルを導出する実用的な方法であることが示唆された。
関連論文リスト
- DiMeR: Disentangled Mesh Reconstruction Model [29.827345186012558]
DiMeRは、疎視メッシュ再構成のための3次元監視を備えた、幾何学的・テクスチュアなアンタングルフィードフォワードモデルである。
性能/コストの低いモジュールを排除し,正規化損失を再設計し,メッシュ抽出のアルゴリズムを効率化する。
大規模な実験により、DiMeRはスパースビュー、シングルイメージ、テキストから3Dタスクにまたがって一般化し、ベースラインを一貫して上回ることを示した。
論文 参考訳(メタデータ) (2025-04-24T15:39:20Z) - Hybrid Explicit Representation for Ultra-Realistic Head Avatars [55.829497543262214]
我々は,超現実的な頭部アバターを作成し,それをリアルタイムにレンダリングする新しい手法を提案する。
UVマップされた3Dメッシュは滑らかな表面のシャープでリッチなテクスチャを捉えるのに使われ、3Dガウス格子は複雑な幾何学構造を表現するために用いられる。
モデル化された結果が最先端のアプローチを上回る実験を行ないました。
論文 参考訳(メタデータ) (2024-03-18T04:01:26Z) - In-Hand 3D Object Reconstruction from a Monocular RGB Video [17.31419675163019]
我々の研究は、静止RGBカメラの前で手で保持・回転する3Dオブジェクトを再構築することを目的としている。
暗黙の神経表現を用いて、多視点画像からジェネリックハンドヘルドオブジェクトの形状を復元する従来の手法は、オブジェクトの可視部分において魅力的な結果を得た。
論文 参考訳(メタデータ) (2023-12-27T06:19:25Z) - Towards Enhanced Image Inpainting: Mitigating Unwanted Object Insertion and Preserving Color Consistency [78.0488707697235]
ASUKA(Aigned Stable Inpainting with UnKnown Areas)と呼ばれるポストプロセッシングアプローチは、インパインティングモデルを改善する。
Masked Auto-Encoder (MAE) は、オブジェクト幻覚を緩和する。
ローカルタスクとしてラテント・ツー・イメージ・デコーディングを扱う特殊なVAEデコーダ。
論文 参考訳(メタデータ) (2023-12-08T05:08:06Z) - O$^2$-Recon: Completing 3D Reconstruction of Occluded Objects in the Scene with a Pre-trained 2D Diffusion Model [28.372289119872764]
咬合は、RGB-Dビデオからの3D再構成において一般的な問題であり、しばしばオブジェクトの完全な再構成をブロックする。
本研究では,物体の隠れた部分の完全な表面を再構築する2次元拡散に基づくインペインティングモデルを用いて,新しい枠組みを提案する。
論文 参考訳(メタデータ) (2023-08-18T14:38:31Z) - MM-3DScene: 3D Scene Understanding by Customizing Masked Modeling with
Informative-Preserved Reconstruction and Self-Distilled Consistency [120.9499803967496]
本稿では,地域統計を探索し,代表的構造化点の発見と保存を行う新しい情報保存型再構築法を提案する。
本手法は, 地域形状のモデル化に集中し, マスク復元のあいまいさを軽減できる。
マスク付き領域における情報保存型再構築と未加工領域からの連続自己蒸留を組み合わせることにより,MM-3DSceneと呼ばれる統合フレームワークが提供される。
論文 参考訳(メタデータ) (2022-12-20T01:53:40Z) - Single-view 3D Mesh Reconstruction for Seen and Unseen Categories [69.29406107513621]
シングルビュー3Dメッシュ再構成は、シングルビューRGB画像から3D形状を復元することを目的とした、基本的なコンピュータビジョンタスクである。
本稿では,一視点3Dメッシュ再構成に取り組み,未知のカテゴリのモデル一般化について検討する。
我々は、再構築におけるカテゴリ境界を断ち切るために、エンドツーエンドの2段階ネットワークであるGenMeshを提案する。
論文 参考訳(メタデータ) (2022-08-04T14:13:35Z) - 3D Dense Geometry-Guided Facial Expression Synthesis by Adversarial
Learning [54.24887282693925]
本稿では,3次元密度(深度,表面正規度)情報を表現操作に用いる新しいフレームワークを提案する。
既製の最先端3D再構成モデルを用いて深度を推定し,大規模RGB-Depthデータセットを作成する。
実験により,提案手法は競争ベースラインと既存の芸術を大きなマージンで上回ることを示した。
論文 参考訳(メタデータ) (2020-09-30T17:12:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。