論文の概要: HyperPriv-EPN: Hypergraph Learning with Privileged Knowledge for Ependymoma Prognosis
- arxiv url: http://arxiv.org/abs/2601.00626v1
- Date: Fri, 02 Jan 2026 09:52:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-05 15:04:33.551512
- Title: HyperPriv-EPN: Hypergraph Learning with Privileged Knowledge for Ependymoma Prognosis
- Title(参考訳): HyperPriv-EPN: Ependymoma Prognosis に対する予備知識を用いたハイパーグラフ学習
- Authors: Shuren Gabriel Yu, Sikang Ren, Yongji Tian,
- Abstract要約: Ependymomaの術前予後は治療計画上重要であるが,MRIでは意味的洞察が欠如しているため困難である。
本稿では,Privileged Informationフレームワークを用いたハイパーグラフベースの学習であるHyperPriv-EPNを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Preoperative prognosis of Ependymoma is critical for treatment planning but challenging due to the lack of semantic insights in MRI compared to post-operative surgical reports. Existing multimodal methods fail to leverage this privileged text data when it is unavailable during inference. To bridge this gap, we propose HyperPriv-EPN, a hypergraph-based Learning Using Privileged Information (LUPI) framework. We introduce a Severed Graph Strategy, utilizing a shared encoder to process both a Teacher graph (enriched with privileged post-surgery information) and a Student graph (restricted to pre-operation data). Through dual-stream distillation, the Student learns to hallucinate semantic community structures from visual features alone. Validated on a multi-center cohort of 311 patients, HyperPriv-EPN achieves state-of-the-art diagnostic accuracy and survival stratification. This effectively transfers expert knowledge to the preoperative setting, unlocking the value of historical post-operative data to guide the diagnosis of new patients without requiring text at inference.
- Abstract(参考訳): Ependymoma の術前予後は治療計画上重要であるが,MRI における意味的洞察の欠如により困難である。
既存のマルチモーダルメソッドは、推論中に利用できないときに、この特権付きテキストデータを利用することができない。
このギャップを埋めるため,我々はハイパーグラフベースのLearning Using Privileged Information (LUPI)フレームワークであるHyperPriv-EPNを提案する。
本稿では,共有エンコーダを用いたSevered Graph Strategyを導入し,教師グラフ(手術後情報に富んだ)と学生グラフ(手術前データに制限された)の両処理を行う。
デュアルストリーム蒸留を通じて、学生は視覚的特徴のみから意味的コミュニティ構造を幻覚することを学ぶ。
HyperPriv-EPNは311人の患者の多施設コホートで検証され、最先端の診断精度と生存層化を実現している。
これにより、専門家の知識を術前設定に効果的に移行し、過去の術後データの価値を解放し、推論時にテキストを必要とせず、新しい患者の診断をガイドする。
関連論文リスト
- MedCutMix: A Data-Centric Approach to Improve Radiology Vision-Language Pre-training with Disease Awareness [17.016370724018557]
我々はMedCutMixを提案する。MedCutMixは、新しいマルチモーダル病中心データ拡張法である。
本手法は,4つの下流放射線診断データセットにまたがる従来の手法を超越した手法である。
論文 参考訳(メタデータ) (2025-09-20T12:51:14Z) - Self-Supervised Cross-Encoder for Neurodegenerative Disease Diagnosis [6.226851122403944]
縦型MRIスキャンにおける時間的連続性を利用した自己監督型クロスエンコーダフレームワークを提案する。
このフレームワークは、学習した表現を2つのコンポーネントに分解する: 静的表現は、対照的な学習によって制約され、安定した解剖学的特徴を捉え、動的表現は、時間的変化を反映する入力漸進正規化によってガイドされる。
アルツハイマー病神経画像イニシアチブデータセットの実験結果から,本手法は分類精度が向上し,解釈性が向上することが示された。
論文 参考訳(メタデータ) (2025-09-09T11:52:24Z) - impuTMAE: Multi-modal Transformer with Masked Pre-training for Missing Modalities Imputation in Cancer Survival Prediction [75.43342771863837]
我々は,効率的なマルチモーダル事前学習戦略を備えた新しいトランスフォーマーに基づくエンドツーエンドアプローチである impuTMAE を紹介する。
マスクされたパッチを再構築することで、モダリティの欠如を同時に示唆しながら、モダリティ間の相互作用とモダリティ内相互作用を学習する。
本モデルは,TGA-GBM/LGGとBraTSデータセットを用いたグリオーマ生存予測のために,異種不完全データに基づいて事前訓練を行った。
論文 参考訳(メタデータ) (2025-08-08T10:01:16Z) - PHGNN: A Novel Prompted Hypergraph Neural Network to Diagnose Alzheimer's Disease [2.1496312331703935]
本稿では,ハイパーグラフに基づく学習と即時学習を統合した新しいPmpted Hypergraph Neural Network (PHGNN) フレームワークを提案する。
本モデルは,ADNIデータセットにおける広範囲な実験により検証され,AD診断とMCI変換予測の両方においてSOTA法より優れていた。
論文 参考訳(メタデータ) (2025-03-18T16:10:43Z) - SHAPE: A Sample-adaptive Hierarchical Prediction Network for Medication
Recommendation [22.899946140205962]
本稿では,SHAPE(Sample-adaptive Hierarchical medicAtion Prediction nEtwork)を提案する。
具体的には、訪問レベルの表現を得るために、医療イベントにおける関係を符号化する、コンパクトなビジット・セット・エンコーダを設計する。
モデルに可変訪問長をモデル化する能力を与えるため,各標本の難易度を訪問長によって自動的に割り当てるソフトカリキュラム学習手法を提案する。
論文 参考訳(メタデータ) (2023-09-09T08:28:04Z) - RECAP-KG: Mining Knowledge Graphs from Raw GP Notes for Remote COVID-19
Assessment in Primary Care [45.43645878061283]
本稿では,患者相談の前後に書かれた生のGP医療ノートから知識グラフ構築を行うフレームワークを提案する。
私たちの知識グラフには、既存の患者の症状、その持続時間、重症度に関する情報が含まれています。
本フレームワークを英国における新型コロナウイルス患者の相談ノートに適用する。
論文 参考訳(メタデータ) (2023-06-17T23:35:51Z) - Dynamic Graph Enhanced Contrastive Learning for Chest X-ray Report
Generation [92.73584302508907]
コントラスト学習を用いた医療レポート作成を支援するために,動的構造とノードを持つ知識グラフを提案する。
詳しくは、グラフの基本構造は一般知識から事前構築される。
各イメージ機能は、レポート生成のためにデコーダモジュールに入力する前に、独自の更新グラフに統合される。
論文 参考訳(メタデータ) (2023-03-18T03:53:43Z) - Predicting Patient Readmission Risk from Medical Text via Knowledge
Graph Enhanced Multiview Graph Convolution [67.72545656557858]
本稿では,電子健康記録の医用テキストを予測に用いる新しい手法を提案する。
外部知識グラフによって強化された多視点グラフを有する患者の退院サマリーを表現している。
実験により,本手法の有効性が証明され,最先端の性能が得られた。
論文 参考訳(メタデータ) (2021-12-19T01:45:57Z) - Sequential Diagnosis Prediction with Transformer and Ontological
Representation [35.88195694025553]
本稿では,患者が訪問する時間スタンプと滞在時間との間に不規則な間隔を対応させるSETORと呼ばれる,エンドツーエンドの頑健なトランスフォーマーモデルを提案する。
2つの実世界の医療データセットで実施された実験により、シーケンシャルな診断予測モデルSETORは、従来の最先端のアプローチよりも優れた予測結果が得られることが示された。
論文 参考訳(メタデータ) (2021-09-07T13:09:55Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
本稿では、医療表現学習と予測分析のための、エンドツーエンドの堅牢なトランスフォーマーベースのソリューション、患者旅行の相互統合、医療オントロジー(MIMO)を提案する。
論文 参考訳(メタデータ) (2021-07-20T07:04:52Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
本稿では,患者の医療旅行におけるコンテキスト依存と時間的関係を捉える,新たな自己注意機構を提案する。
エンド・ツー・エンドの双方向時間エンコーダネットワーク(BiteNet)が患者の旅路の表現を学習する。
実世界のEHRデータセットを用いた2つの教師付き予測と2つの教師なしクラスタリングタスクにおける手法の有効性を評価した。
論文 参考訳(メタデータ) (2020-09-24T00:42:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。