論文の概要: LearnAD: Learning Interpretable Rules for Brain Networks in Alzheimer's Disease Classification
- arxiv url: http://arxiv.org/abs/2601.00877v1
- Date: Tue, 30 Dec 2025 23:30:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-06 16:25:21.816769
- Title: LearnAD: Learning Interpretable Rules for Brain Networks in Alzheimer's Disease Classification
- Title(参考訳): LearnAD:アルツハイマー病分類における脳ネットワークの解釈ルールの学習
- Authors: Thomas Andrews, Mark Law, Sara Ahmadi-Abhari, Alessandra Russo,
- Abstract要約: LearnADは、脳磁気共鳴画像データからアルツハイマー病を予測する神経シンボリックな方法である。
LearnADは統計モデル、決定木、ランダムフォレスト、GNNを応用して関連する脳の接続を特定し、FastLASを使ってグローバルなルールを学習する。
- 参考スコア(独自算出の注目度): 45.38616500656047
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce LearnAD, a neuro-symbolic method for predicting Alzheimer's disease from brain magnetic resonance imaging data, learning fully interpretable rules. LearnAD applies statistical models, Decision Trees, Random Forests, or GNNs to identify relevant brain connections, and then employs FastLAS to learn global rules. Our best instance outperforms Decision Trees, matches Support Vector Machine accuracy, and performs only slightly below Random Forests and GNNs trained on all features, all while remaining fully interpretable. Ablation studies show that our neuro-symbolic approach improves interpretability with comparable performance to pure statistical models. LearnAD demonstrates how symbolic learning can deepen our understanding of GNN behaviour in clinical neuroscience.
- Abstract(参考訳): 脳磁気共鳴画像データからアルツハイマー病を予測し、完全に解釈可能なルールを学習する神経シンボリックな方法であるLearnADを紹介した。
LearnADは統計モデル、決定木、ランダムフォレスト、GNNを応用して関連する脳の接続を特定し、グローバルなルールを学ぶためにFastLASを使用している。
私たちのベストインスタンスは、決定木より優れ、サポートベクトルマシンの精度にマッチし、すべての機能でトレーニングされたランダムフォレストとGNNよりわずかに低いパフォーマンスで、完全に解釈可能なままです。
アブレーション研究は、我々のニューロシンボリックアプローチが純粋統計モデルに匹敵する性能で解釈可能性を向上させることを示している。
LearnADは、臨床神経科学におけるGNN行動に対するシンボリックラーニングの理解を深める方法を示している。
関連論文リスト
- Disentangling Neurodegeneration with Brain Age Gap Prediction Models: A Graph Signal Processing Perspective [89.99666725996975]
脳年齢ギャップ予測(BAGP)モデルは、データから予測される脳年齢と時系列年齢との差を推定する。
本稿では、BAGPの概要と、グラフ信号処理(GSP)の最近の進歩に基づく、このアプリケーションのための原則化されたフレームワークを紹介する。
VNNは強力な理論的基盤と操作的解釈可能性を提供し、脳年齢差予測の堅牢な推定を可能にする。
論文 参考訳(メタデータ) (2025-10-14T17:44:45Z) - NeuroSymAD: A Neuro-Symbolic Framework for Interpretable Alzheimer's Disease Diagnosis [35.4733004746959]
NeuroSymADは、ニューラルネットワークとシンボリック推論を相乗化するための、ニューロシンボリックなフレームワークである。
ニューラルネットワークは脳のMRIスキャンを受理し、大きな言語モデルは医療規則を蒸留し、生体マーカーや医療史を推論して象徴的なシステムを導く。
論文 参考訳(メタデータ) (2025-03-01T14:29:39Z) - Brain-Aware Readout Layers in GNNs: Advancing Alzheimer's early Detection and Neuroimaging [1.074960192271861]
本研究では,グラフニューラルネットワーク(GNN)のための新しい脳認識読み出し層(BA読み出し層)を提案する。
機能的接続とノード埋め込みに基づく脳領域のクラスタリングによって、このレイヤは、複雑な脳ネットワーク特性をキャプチャするGNNの機能を改善する。
以上の結果から,BA読み出し層を有するGNNは,プレクリニカルアルツハイマー認知複合度(PACC)の予測において,従来のモデルよりも有意に優れていた。
論文 参考訳(メタデータ) (2024-10-03T05:04:45Z) - Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
本稿では,脳MRIにKGPL(Knowledge-Guided Prompt Learning)を用いた2段階のセグメンテーションフレームワークを提案する。
具体的には,大規模データセットと準最適ラベルを用いたトレーニング前セグメンテーションモデルについて述べる。
知識的プロンプトの導入は、解剖学的多様性と生物学的プロセスの間の意味的関係を捉えている。
論文 参考訳(メタデータ) (2024-07-31T04:32:43Z) - Towards a Foundation Model for Brain Age Prediction using coVariance
Neural Networks [102.75954614946258]
時間的年齢に関する脳年齢の増加は、神経変性と認知低下に対する脆弱性の増加を反映している。
NeuroVNNは、時系列年齢を予測するために、健康な人口の回帰モデルとして事前訓練されている。
NeuroVNNは、脳の年齢に解剖学的解釈性を加え、任意の脳のアトラスに従って計算されたデータセットへの転移を可能にする「スケールフリー」特性を持つ。
論文 参考訳(メタデータ) (2024-02-12T14:46:31Z) - Transferability of coVariance Neural Networks and Application to
Interpretable Brain Age Prediction using Anatomical Features [119.45320143101381]
グラフ畳み込みネットワーク(GCN)は、トポロジー駆動のグラフ畳み込み演算を利用して、推論タスクのためにグラフをまたいだ情報を結合する。
我々は、共分散行列をグラフとして、共分散ニューラルネットワーク(VNN)の形でGCNを研究した。
VNNは、GCNからスケールフリーなデータ処理アーキテクチャを継承し、ここでは、共分散行列が極限オブジェクトに収束するデータセットに対して、VNNが性能の転送可能性を示すことを示す。
論文 参考訳(メタデータ) (2023-05-02T22:15:54Z) - Meta-RegGNN: Predicting Verbal and Full-Scale Intelligence Scores using
Graph Neural Networks and Meta-Learning [0.9137554315375922]
本稿では,脳コネクトームから行動スコアを予測するメタラーニング,メタRegGNNによる新しい回帰グラフニューラルネットワークを提案する。
言語およびフルスケールインテリジェンスクォージェント(IQ)予測の結果は,ニューロタイプおよび自閉症スペクトラム障害のコホートにおいて,既存の手法よりも優れていた。
論文 参考訳(メタデータ) (2022-09-14T07:19:03Z) - Predicting cognitive scores with graph neural networks through sample
selection learning [0.0]
機能的脳コネクトームは知能商(IQ)スコアなどの認知的指標を予測するために用いられる。
脳の接続からIQスコアを予測するための新しい回帰GNNモデル(RegGNN)を設計する。
また,最も予測力の高いトレーニングサンプルの選定方法を学ぶことを目的とした,emphlearningに基づくサンプル選択手法を提案する。
論文 参考訳(メタデータ) (2021-06-17T11:45:39Z) - Deep Learning Identifies Neuroimaging Signatures of Alzheimer's Disease
Using Structural and Synthesized Functional MRI Data [8.388888908045406]
脳MRIにおける構造-機能変換を初めて学習することにより,潜在的な解決策を提案する。
次に,大規模構造スキャンから空間整合機能画像を合成する。
時間的ローブは最も予測可能な構造領域であり、パリエト後頭ローブはモデルで最も予測可能な機能領域である。
論文 参考訳(メタデータ) (2021-04-10T03:16:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。