論文の概要: Multi-strategy Improved Northern Goshawk Optimization for WSN Coverage Enhancement
- arxiv url: http://arxiv.org/abs/2601.01898v1
- Date: Mon, 05 Jan 2026 08:43:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-06 16:25:22.867618
- Title: Multi-strategy Improved Northern Goshawk Optimization for WSN Coverage Enhancement
- Title(参考訳): WSN被覆強化のためのマルチストラテジー改善ノーザンゴスホーク最適化
- Authors: Yiran Tian, Yuanjia Liu,
- Abstract要約: 本稿では,無線センサネットワーク(WSN)の高度最適化手法を提案する。
マルチストラテジー統合のNorthern Goshawk Optimization (NGO)アルゴリズムに基づいている。
実験の結果,提案アルゴリズムは,カバレッジ向上とノード接続性の両方の観点から,既存のベンチマークよりも有意に優れていた。
- 参考スコア(独自算出の注目度): 1.7188280334580195
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To enhance the coverage rate of Wireless Sensor Networks (WSNs), this paper proposes an advanced optimization strategy based on a multi-strategy integrated Northern Goshawk Optimization (NGO) algorithm. Specifically, multivariate chaotic mapping is first employed to improve the randomness and uniformity of the initial population. To further bolster population diversity and prevent the algorithm from stagnating in local optima, a bidirectional population evolutionary dynamics strategy is incorporated following the pursuit-and-evasion phase, thereby facilitating the attainment of the global optimal solution. Extensive simulations were conducted to evaluate the performance of the proposed multi-strategy NGO in WSN coverage. Experimental results demonstrate that the proposed algorithm significantly outperforms existing benchmarks in terms of both coverage enhancement and node connectivity.
- Abstract(参考訳): 無線センサネットワーク(WSN)の網羅率を高めるために,マルチストラテジー統合北ゴスホーク最適化(NGO)アルゴリズムに基づく高度な最適化戦略を提案する。
具体的には、初期個体群のランダム性と均一性を改善するために、まず多変量カオスマッピングを用いる。
集団の多様性をさらに促進し、アルゴリズムが局所最適で停滞するのを防ぐため、追従・回避フェーズの後に双方向の集団進化力学戦略が組み込まれ、グローバル最適解の達成が容易になる。
提案したマルチストラテジーNGOの性能をWSNのカバレッジで評価するために,広範囲なシミュレーションを行った。
実験の結果,提案アルゴリズムは,カバレッジ向上とノード接続性の両方の観点から,既存のベンチマークよりも有意に優れていた。
関連論文リスト
- Towards a Unified Analysis of Neural Networks in Nonparametric Instrumental Variable Regression: Optimization and Generalization [66.08522228989634]
非パラメトリックインスツルメンタル変数回帰(NPIV)における2段階最小二乗法(2SLS)アプローチのためのニューラルネットワークの最初の大域収束結果を確立する。
これは平均場ランゲヴィンダイナミクス(MFLD)を通して持ち上げられた視点を採用することで達成される。
論文 参考訳(メタデータ) (2025-11-18T17:51:17Z) - A Gradient Meta-Learning Joint Optimization for Beamforming and Antenna Position in Pinching-Antenna Systems [63.213207442368294]
マルチ導波路ピンチアンテナシステムの新しい最適化設計について検討する。
提案したGML-JOアルゴリズムは,既存の最適化手法と比較して,様々な選択や性能に頑健である。
論文 参考訳(メタデータ) (2025-06-14T17:35:27Z) - RL-finetuning LLMs from on- and off-policy data with a single algorithm [53.70731390624718]
大規模言語モデルを微調整するための新しい強化学習アルゴリズム(AGRO)を提案する。
AGROは生成整合性の概念を利用しており、最適ポリシーはモデルの任意の世代間での整合性の概念を満たすと述べている。
サンプルベースの政策勾配による最適解を求めるアルゴリズムを導出し,その収束に関する理論的保証を提供する。
論文 参考訳(メタデータ) (2025-03-25T12:52:38Z) - Global-Decision-Focused Neural ODEs for Proactive Grid Resilience Management [50.34345101758248]
本稿では,機能停止予測とグローバルに最適化された介入を統合するフレームワークPATOGを提案する。
提案手法は,空間的かつ時間的に整合性のある意思決定を保証し,予測精度と操作効率を両立させる。
合成および実世界のデータセットの実験では、停止予測一貫性とグリッドレジリエンスが大幅に改善された。
論文 参考訳(メタデータ) (2025-02-25T16:15:35Z) - Integrating Chaotic Evolutionary and Local Search Techniques in Decision Space for Enhanced Evolutionary Multi-Objective Optimization [1.8130068086063336]
本稿では,SOMMOP(Single-Objective Multi-Modal Optimization)とMOO(Multi-Objective Optimization)の両方に焦点を当てる。
SOMMOPではニッチ技術とカオス進化を統合し,ガウス突然変異を併用したパーシスタンス・クラスタリングを行った。
MOOでは,これらの手法を不確実性に基づく選択,適応的チューニングを組み込んだ包括的フレームワークに拡張し,決定論的群集に半径(R)の概念を導入する。
論文 参考訳(メタデータ) (2024-11-12T15:18:48Z) - An accelerate Prediction Strategy for Dynamic Multi-Objective Optimization [7.272641346606365]
本稿では,進化的アルゴリズムフレームワークにおける予測戦略の高速化のための新しいアプローチを提案する。
本稿では,アルゴリズムの探索動作を予測・調整するために,二階微分を組み込んだ適応予測戦略を提案する。
標準DMOPのベンチマーク問題を用いて,提案手法の性能を4つの最先端アルゴリズムと比較した。
論文 参考訳(メタデータ) (2024-10-08T08:13:49Z) - A Nonlinear African Vulture Optimization Algorithm Combining Henon Chaotic Mapping Theory and Reverse Learning Competition Strategy [9.252838762325927]
ヘノンのカオスマッピング理論とエリート集団戦略は、ハゲワシの初期個体数のランダム性と多様性を改善するために提案されている。
逆学習競争戦略は、最適解に対する発見分野の拡大を目的としている。
提案したHWEAVOAは, 収束速度, 最適化能力, 解安定性における比較アルゴリズムよりも優れている全試験関数で第1位である。
論文 参考訳(メタデータ) (2024-03-22T01:20:45Z) - Enhancing Optimization Through Innovation: The Multi-Strategy Improved
Black Widow Optimization Algorithm (MSBWOA) [11.450701963760817]
本稿では,MSBWOA(Multi-Strategy Improved Black Widow Optimization Algorithm)を提案する。
複雑な最適化問題の解法において、標準的なブラックウィドウアルゴリズム(BW)の性能を向上させるように設計されている。
これは、多様性と初期の探索能力を高めるためにテントカオスマッピングを用いて人口を初期化すること、動的人口の維持と早期収束を防ぐために最も適していない個体に突然変異最適化を実装すること、局所最適から逃れるアルゴリズムの能力を高めるためにランダムな摂動戦略を追加すること、の4つの主要な戦略を統合する。
論文 参考訳(メタデータ) (2023-12-20T19:55:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。