論文の概要: A Nonlinear African Vulture Optimization Algorithm Combining Henon Chaotic Mapping Theory and Reverse Learning Competition Strategy
- arxiv url: http://arxiv.org/abs/2403.15505v2
- Date: Tue, 26 Mar 2024 13:42:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 21:05:08.931943
- Title: A Nonlinear African Vulture Optimization Algorithm Combining Henon Chaotic Mapping Theory and Reverse Learning Competition Strategy
- Title(参考訳): ヘノンカオス写像理論と逆学習競合戦略を組み合わせた非線形アフリカヴァルチャー最適化アルゴリズム
- Authors: Baiyi Wang, Zipeng Zhang, Patrick Siarry, Xinhua Liu, Grzegorz Królczyk, Dezheng Hua, Frantisek Brumercik, Zhixiong Li,
- Abstract要約: ヘノンのカオスマッピング理論とエリート集団戦略は、ハゲワシの初期個体数のランダム性と多様性を改善するために提案されている。
逆学習競争戦略は、最適解に対する発見分野の拡大を目的としている。
提案したHWEAVOAは, 収束速度, 最適化能力, 解安定性における比較アルゴリズムよりも優れている全試験関数で第1位である。
- 参考スコア(独自算出の注目度): 9.252838762325927
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In order to alleviate the main shortcomings of the AVOA, a nonlinear African vulture optimization algorithm combining Henon chaotic mapping theory and reverse learning competition strategy (HWEAVOA) is proposed. Firstly, the Henon chaotic mapping theory and elite population strategy are proposed to improve the randomness and diversity of the vulture's initial population; Furthermore, the nonlinear adaptive incremental inertial weight factor is introduced in the location update phase to rationally balance the exploration and exploitation abilities, and avoid individual falling into a local optimum; The reverse learning competition strategy is designed to expand the discovery fields for the optimal solution and strengthen the ability to jump out of the local optimal solution. HWEAVOA and other advanced comparison algorithms are used to solve classical and CEC2022 test functions. Compared with other algorithms, the convergence curves of the HWEAVOA drop faster and the line bodies are smoother. These experimental results show the proposed HWEAVOA is ranked first in all test functions, which is superior to the comparison algorithms in convergence speed, optimization ability, and solution stability. Meanwhile, HWEAVOA has reached the general level in the algorithm complexity, and its overall performance is competitive in the swarm intelligence algorithms.
- Abstract(参考訳): AVOAの主な欠点を軽減するために、ヘノンカオスマッピング理論と逆学習競争戦略(HWEAVOA)を組み合わせた非線形アフリカハゲェル最適化アルゴリズムを提案する。
まず、ハゲワシの初期個体数のランダム性と多様性を改善するため、ヘノンカオスマッピング理論とエリート集団戦略を提案し、また、探索と搾取能力の合理的なバランスをとるために、位置更新フェーズに非線形適応的漸進的慣性重因子を導入し、各個体が局所最適に落下することを避ける。
HWEAVOAや他の高度な比較アルゴリズムは古典的およびCEC2022テスト関数を解くために用いられる。
他のアルゴリズムと比較して、HWEAVOAの収束曲線は速く、直線体は滑らかである。
これらの実験結果から,提案したHWEAVOAは, 収束速度, 最適化能力, 解安定性において, 比較アルゴリズムよりも優れている全試験関数において第1位であることがわかった。
一方、HWEAVOAはアルゴリズムの複雑さの一般的なレベルに達し、その全体的な性能はSwarmインテリジェンスアルゴリズムと競合している。
関連論文リスト
- Integrating Chaotic Evolutionary and Local Search Techniques in Decision Space for Enhanced Evolutionary Multi-Objective Optimization [1.8130068086063336]
本稿では,SOMMOP(Single-Objective Multi-Modal Optimization)とMOO(Multi-Objective Optimization)の両方に焦点を当てる。
SOMMOPではニッチ技術とカオス進化を統合し,ガウス突然変異を併用したパーシスタンス・クラスタリングを行った。
MOOでは,これらの手法を不確実性に基づく選択,適応的チューニングを組み込んだ包括的フレームワークに拡張し,決定論的群集に半径(R)の概念を導入する。
論文 参考訳(メタデータ) (2024-11-12T15:18:48Z) - Provably Faster Algorithms for Bilevel Optimization via Without-Replacement Sampling [96.47086913559289]
勾配に基づくアルゴリズムはバイレベル最適化に広く用いられている。
本研究では,より高速な収束率を実現する非置換サンプリングに基づくアルゴリズムを提案する。
合成および実世界の両方のアプリケーションに対してアルゴリズムを検証する。
論文 参考訳(メタデータ) (2024-11-07T17:05:31Z) - Enhancing Optimization Through Innovation: The Multi-Strategy Improved
Black Widow Optimization Algorithm (MSBWOA) [11.450701963760817]
本稿では,MSBWOA(Multi-Strategy Improved Black Widow Optimization Algorithm)を提案する。
複雑な最適化問題の解法において、標準的なブラックウィドウアルゴリズム(BW)の性能を向上させるように設計されている。
これは、多様性と初期の探索能力を高めるためにテントカオスマッピングを用いて人口を初期化すること、動的人口の維持と早期収束を防ぐために最も適していない個体に突然変異最適化を実装すること、局所最適から逃れるアルゴリズムの能力を高めるためにランダムな摂動戦略を追加すること、の4つの主要な戦略を統合する。
論文 参考訳(メタデータ) (2023-12-20T19:55:36Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
本稿では,UnRolled Federated Learning (SURF)を導入する。
提案手法は,この拡張における2つの課題,すなわち,非学習者へのデータセット全体の供給の必要性と,フェデレート学習の分散的性質に対処する。
論文 参考訳(メタデータ) (2023-05-24T17:26:22Z) - A Hybrid Chimp Optimization Algorithm and Generalized Normal
Distribution Algorithm with Opposition-Based Learning Strategy for Solving
Data Clustering Problems [0.0]
本稿では、類似データと異種データを異なるグループに分類するコネクティビティ原則に基づいて、クラスタを分離するデータクラスタリングについて検討する。
メタヒューリスティック最適化アルゴリズムとインテリジェンスに基づく手法が,最適解を妥当な時間で達成するために導入された。
論文 参考訳(メタデータ) (2023-02-16T23:29:01Z) - Faster Adaptive Federated Learning [84.38913517122619]
フェデレートラーニングは分散データの出現に伴って注目を集めている。
本稿では,クロスサイロFLにおけるモーメントに基づく分散低減手法に基づく適応アルゴリズム(FAFED)を提案する。
論文 参考訳(メタデータ) (2022-12-02T05:07:50Z) - On the Convergence of Distributed Stochastic Bilevel Optimization
Algorithms over a Network [55.56019538079826]
バイレベル最適化は、幅広い機械学習モデルに適用されている。
既存のアルゴリズムの多くは、分散データを扱うことができないように、シングルマシンの設定を制限している。
そこで我々は,勾配追跡通信機構と2つの異なる勾配に基づく分散二段階最適化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-06-30T05:29:52Z) - Fast and computationally efficient generative adversarial network
algorithm for unmanned aerial vehicle-based network coverage optimization [1.2853186701496802]
移動ネットワークにおける動的な交通需要の課題は、無人航空機をベースとした移動セルに対処されている。
将来,無人航空機の膨大な可能性を考えると,カバー範囲最適化のための新しいアルゴリズムを提案する。
提案アルゴリズムは,一意の多層和プーリング損失関数を持つ条件付き生成逆ニューラルネットワークに基づいて実装された。
論文 参考訳(メタデータ) (2022-03-25T12:13:21Z) - Epistocracy Algorithm: A Novel Hyper-heuristic Optimization Strategy for
Solving Complex Optimization Problems [1.471992435706872]
本稿では,人間の社会・政治行動と知性を組み込んで複雑な最適化問題を解く,エピストクラシーという新しい進化的アルゴリズムを提案する。
エピストクラシーのアルゴリズムのインスピレーションは、教育を受けた人々が教育を受けていない人や教育を受けていない人よりも投票力を持つ政治体制に端を発する。
実験結果から, エピストクラシーアルゴリズムは, 性能, 精度, 堅牢性の観点から, 最先端の進化的, 群知能アルゴリズムよりも優れていることがわかった。
論文 参考訳(メタデータ) (2021-01-30T19:07:09Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOSは実数値変数の制約付きおよび制約なし問題に対する大域的最適化アルゴリズムである。
これはよく知られた微分進化(DE)アルゴリズムに多くの改良を加えている。
その結果、EOSisは、最先端の単一人口自己適応Dアルゴリズムと比較して高い性能を達成可能であることが証明された。
論文 参考訳(メタデータ) (2020-07-09T10:19:22Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
適応性は現代最適化理論において重要であるが、研究されていない性質である。
提案アルゴリズムは,PL目標に対して既存のアルゴリズムよりも優れた性能を保ちながら,PL目標に対して最適な収束性を実現することを実証した。
論文 参考訳(メタデータ) (2020-02-13T05:42:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。