論文の概要: Enhancing Optimization Through Innovation: The Multi-Strategy Improved
Black Widow Optimization Algorithm (MSBWOA)
- arxiv url: http://arxiv.org/abs/2312.13395v1
- Date: Wed, 20 Dec 2023 19:55:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-22 16:50:29.123838
- Title: Enhancing Optimization Through Innovation: The Multi-Strategy Improved
Black Widow Optimization Algorithm (MSBWOA)
- Title(参考訳): イノベーションによる最適化の強化:マルチストラテジー改善ブラックウィドウ最適化アルゴリズム(MSBWOA)
- Authors: Xin Xu
- Abstract要約: 本稿では,MSBWOA(Multi-Strategy Improved Black Widow Optimization Algorithm)を提案する。
複雑な最適化問題の解法において、標準的なブラックウィドウアルゴリズム(BW)の性能を向上させるように設計されている。
これは、多様性と初期の探索能力を高めるためにテントカオスマッピングを用いて人口を初期化すること、動的人口の維持と早期収束を防ぐために最も適していない個体に突然変異最適化を実装すること、局所最適から逃れるアルゴリズムの能力を高めるためにランダムな摂動戦略を追加すること、の4つの主要な戦略を統合する。
- 参考スコア(独自算出の注目度): 11.450701963760817
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a Multi-Strategy Improved Black Widow Optimization
Algorithm (MSBWOA), designed to enhance the performance of the standard Black
Widow Algorithm (BW) in solving complex optimization problems. The proposed
algorithm integrates four key strategies: initializing the population using
Tent chaotic mapping to enhance diversity and initial exploratory capability;
implementing mutation optimization on the least fit individuals to maintain
dynamic population and prevent premature convergence; incorporating a
non-linear inertia weight to balance global exploration and local exploitation;
and adding a random perturbation strategy to enhance the algorithm's ability to
escape local optima. Evaluated through a series of standard test functions, the
MSBWOA demonstrates significant performance improvements in various dimensions,
particularly in convergence speed and solution quality. Experimental results
show that compared to the traditional BW algorithm and other existing
optimization methods, the MSBWOA exhibits better stability and efficiency in
handling a variety of optimization problems. These findings validate the
effectiveness of the proposed strategies and offer a new solution approach for
complex optimization challenges.
- Abstract(参考訳): 本稿では,複雑な最適化問題の解法における標準ブラックウィドウアルゴリズム(BW)の性能向上を目的としたマルチストラテジー改良ブラックウィドウ最適化アルゴリズム(MSBWOA)を提案する。
提案アルゴリズムは,多様性と探索能力を高めるためにテントカオスマッピングを用いて人口を初期化すること,動的集団の維持と早期収束を防ぐために最も適していない個体に突然変異を最適化すること,グローバルな探索と局所的利用のバランスをとるために非線形慣性重みを組み込むこと,局所的オプティマから逃れるためのランダムな摂動戦略を追加すること,の4つの主要な戦略を統合する。
一連の標準的なテスト機能を通じて評価され、MSBWOAは様々な次元、特に収束速度と解の質において、大幅な性能向上を示す。
実験の結果,従来のBWアルゴリズムや既存の最適化手法と比較して,MSBWOAは様々な最適化問題に対処する際の安定性と効率性が向上していることがわかった。
これらの結果は,提案手法の有効性を検証し,複雑な最適化課題に対する新しい解法を提案する。
関連論文リスト
- Integrating Chaotic Evolutionary and Local Search Techniques in Decision Space for Enhanced Evolutionary Multi-Objective Optimization [1.8130068086063336]
本稿では,SOMMOP(Single-Objective Multi-Modal Optimization)とMOO(Multi-Objective Optimization)の両方に焦点を当てる。
SOMMOPではニッチ技術とカオス進化を統合し,ガウス突然変異を併用したパーシスタンス・クラスタリングを行った。
MOOでは,これらの手法を不確実性に基づく選択,適応的チューニングを組み込んだ包括的フレームワークに拡張し,決定論的群集に半径(R)の概念を導入する。
論文 参考訳(メタデータ) (2024-11-12T15:18:48Z) - Sharpness-Aware Black-Box Optimization [47.95184866255126]
シャープネスを考慮したブラックボックス最適化(SABO)アルゴリズムを提案する。
実験により, モデル一般化性能向上のためのSABO法の有効性が実証された。
論文 参考訳(メタデータ) (2024-10-16T11:08:06Z) - An accelerate Prediction Strategy for Dynamic Multi-Objective Optimization [7.272641346606365]
本稿では,進化的アルゴリズムフレームワークにおける予測戦略の高速化のための新しいアプローチを提案する。
本稿では,アルゴリズムの探索動作を予測・調整するために,二階微分を組み込んだ適応予測戦略を提案する。
標準DMOPのベンチマーク問題を用いて,提案手法の性能を4つの最先端アルゴリズムと比較した。
論文 参考訳(メタデータ) (2024-10-08T08:13:49Z) - Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Thenフレームワークは、機械学習モデルを使用して、最適化問題の未知のパラメータを、解決前の機能から予測する。
本稿では,共同予測モデルを用いて観測可能特徴から最適解を直接学習する手法を提案する。
論文 参考訳(メタデータ) (2024-09-07T19:52:14Z) - A Nonlinear African Vulture Optimization Algorithm Combining Henon Chaotic Mapping Theory and Reverse Learning Competition Strategy [9.252838762325927]
ヘノンのカオスマッピング理論とエリート集団戦略は、ハゲワシの初期個体数のランダム性と多様性を改善するために提案されている。
逆学習競争戦略は、最適解に対する発見分野の拡大を目的としている。
提案したHWEAVOAは, 収束速度, 最適化能力, 解安定性における比較アルゴリズムよりも優れている全試験関数で第1位である。
論文 参考訳(メタデータ) (2024-03-22T01:20:45Z) - Model Uncertainty in Evolutionary Optimization and Bayesian Optimization: A Comparative Analysis [5.6787965501364335]
ブラックボックス最適化問題は、多くの現実世界のアプリケーションで一般的な問題である。
これらの問題はインプット・アウトプット・インタラクションを通じて内部動作へのアクセスなしに最適化する必要がある。
このような問題に対処するために2つの広く使われている勾配のない最適化手法が用いられている。
本稿では,2つの手法間のモデル不確実性の類似点と相違点を明らかにすることを目的とする。
論文 参考訳(メタデータ) (2024-03-21T13:59:19Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
この設定における中心的な課題は最適化問題の解によるバックプロパゲーションであり、しばしば閉形式を欠いている。
本稿では, 非線形最適化の後方通過に関する理論的知見を提供し, 特定の反復法による線形システムの解と等価であることを示す。
Folded Optimizationと呼ばれるシステムが提案され、非ローリングなソルバ実装からより効率的なバックプロパゲーションルールを構築する。
論文 参考訳(メタデータ) (2023-12-28T23:15:18Z) - Advancements in Optimization: Adaptive Differential Evolution with
Diversification Strategy [0.0]
この研究は2次元空間において単目的最適化を採用し、複数の反復で各ベンチマーク関数上でADEDSを実行する。
ADEDSは、多くの局所最適化、プレート型、谷型、伸縮型、ノイズの多い機能を含む様々な最適化課題において、標準Dより一貫して優れている。
論文 参考訳(メタデータ) (2023-10-02T10:05:41Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
分子目的を最適化するための様々なZO最適化手法の有効性について検討する。
ZO符号に基づく勾配降下(ZO-signGD)の利点を示す。
本稿では,Guurcamol スイートから広く使用されているベンチマークタスクに対して,ZO 最適化手法の有効性を示す。
論文 参考訳(メタデータ) (2022-10-27T01:58:10Z) - Socio-cognitive Optimization of Time-delay Control Problems using
Evolutionary Metaheuristics [89.24951036534168]
メタヒューリスティックス(Metaheuristics)は、古典的なアプローチでは解決できない難解な問題を解くために使用される普遍的な最適化アルゴリズムである。
本稿では,キャストに基づく新しい社会認知メタヒューリスティックの構築を目標とし,このアルゴリズムのいくつかのバージョンを時間遅延システムモデルの最適化に適用する。
論文 参考訳(メタデータ) (2022-10-23T22:21:10Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOSは実数値変数の制約付きおよび制約なし問題に対する大域的最適化アルゴリズムである。
これはよく知られた微分進化(DE)アルゴリズムに多くの改良を加えている。
その結果、EOSisは、最先端の単一人口自己適応Dアルゴリズムと比較して高い性能を達成可能であることが証明された。
論文 参考訳(メタデータ) (2020-07-09T10:19:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。