論文の概要: Expert-Guided Explainable Few-Shot Learning with Active Sample Selection for Medical Image Analysis
- arxiv url: http://arxiv.org/abs/2601.02409v1
- Date: Fri, 02 Jan 2026 05:09:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-07 17:02:12.636861
- Title: Expert-Guided Explainable Few-Shot Learning with Active Sample Selection for Medical Image Analysis
- Title(参考訳): 医用画像解析のためのアクティブサンプル選択によるエキスパートガイド型説明可能なFew-Shot学習
- Authors: Longwei Wang, Ifrat Ikhtear Uddin, KC Santosh,
- Abstract要約: エキスパートガイドのFew-Shot LearningとExplainability-Guided ALを紹介する。
EGxFSLは、Grad-CAMベースのDice損失による空間的監視として、放射線学者が定義した領域を統合している。
xGALは、予測の不確実性と注意欠陥の両方を優先した反復的なサンプル取得を導入する。
- 参考スコア(独自算出の注目度): 2.7946918847372277
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical image analysis faces two critical challenges: scarcity of labeled data and lack of model interpretability, both hindering clinical AI deployment. Few-shot learning (FSL) addresses data limitations but lacks transparency in predictions. Active learning (AL) methods optimize data acquisition but overlook interpretability of acquired samples. We propose a dual-framework solution: Expert-Guided Explainable Few-Shot Learning (EGxFSL) and Explainability-Guided AL (xGAL). EGxFSL integrates radiologist-defined regions-of-interest as spatial supervision via Grad-CAM-based Dice loss, jointly optimized with prototypical classification for interpretable few-shot learning. xGAL introduces iterative sample acquisition prioritizing both predictive uncertainty and attention misalignment, creating a closed-loop framework where explainability guides training and sample selection synergistically. On the BraTS (MRI), VinDr-CXR (chest X-ray), and SIIM-COVID-19 (chest X-ray) datasets, we achieve accuracies of 92\%, 76\%, and 62\%, respectively, consistently outperforming non-guided baselines across all datasets. Under severe data constraints, xGAL achieves 76\% accuracy with only 680 samples versus 57\% for random sampling. Grad-CAM visualizations demonstrate guided models focus on diagnostically relevant regions, with generalization validated on breast ultrasound confirming cross-modality applicability.
- Abstract(参考訳): 医療画像分析は、ラベル付きデータの不足とモデル解釈性の欠如という2つの重要な課題に直面している。
FSL(Few-shot Learning)は、データ制限に対処するが、予測に透明性がない。
アクティブラーニング(AL)手法は、データ取得を最適化するが、取得したサンプルの解釈可能性を見落としている。
本稿では,Explainable Few-Shot Learning (EGxFSL) と Explainability-Guided AL (xGAL) という2種類のフレームワークを提案する。
EGxFSLは、Grad-CAMベースのDice損失による空間的監視として、放射線学者が定義した領域を統合する。
xGALは、予測の不確実性と注意の不一致の両方を優先した反復的なサンプル取得を導入し、説明可能性のトレーニングとサンプル選択を相乗的にガイドするクローズドループフレームワークを作成する。
BraTS(MRI)、VinDr-CXR(胸部X線)、SIIM-COVID-19(胸部X線)のデータセットでは、それぞれ92\%、76\%、62\%の精度を達成し、すべてのデータセットで非誘導ベースラインを一貫して上回ります。
厳密なデータ制約の下では、xGALは680サンプルで76\%の精度を達成するが、ランダムサンプリングでは57\%である。
Grad-CAMビジュアライゼーションは、診断に関連のある領域に焦点を当てたガイド付きモデルを示し、乳房超音波によるクロスモダリティ適用性を検証した。
関連論文リスト
- Deep Unsupervised Anomaly Detection in Brain Imaging: Large-Scale Benchmarking and Bias Analysis [42.60508892284938]
脳画像の深部教師なし異常検出のための大規模マルチセンターベンチマークを提案する。
健康なデータセットと多様な臨床コホートにまたがる2,221T1wと1,262T2wのスキャンを行った。
我々のベンチマークは今後の研究の透明な基盤を確立し、臨床翻訳の優先順位を強調している。
論文 参考訳(メタデータ) (2025-12-01T11:03:27Z) - Taylor-Series Expanded Kolmogorov-Arnold Network for Medical Imaging Classification [0.0]
本研究は,限られた多様なデータセットを用いた正確な医用画像分類のためのKAN(Kolmogorov-Arnold Networks)を紹介する。
モデルはSBTAYLOR-KAN、B-splinesとTaylorシリーズの統合、SBRBF-KAN、Morletウェーブレット変換にB-splinesを埋め込むSBWAVELET-KANである。
脳MRI,胸部X線,結核X線,皮膚病変画像を前処理なしで評価した。
論文 参考訳(メタデータ) (2025-09-17T04:33:54Z) - Expert-Guided Explainable Few-Shot Learning for Medical Image Diagnosis [2.7946918847372277]
本稿では,放射線技師が提案する関心領域をモデルトレーニングに統合する,専門家による説明可能な数ショット学習フレームワークを提案する。
我々は、BraTS(MRI)とVinDr-CXR(Chest X-ray)の2つの異なるデータセット上で、我々のフレームワークを評価する。
本研究は, 少数症例の医用画像診断において, 評価と解釈のギャップを埋めるために, 専門家が指導する注意指導を取り入れることの有効性を実証するものである。
論文 参考訳(メタデータ) (2025-09-08T05:31:37Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
本稿では,視覚および言語入力を共通空間に埋め込んだ医用視覚言語モデル(VLM)について検討する。
本稿では,新しい画像領域やテキスト領域への汎用事前学習モデルの適用など,低データ性能向上のためのいくつかの候補手法について検討する。
テキスト・ツー・イメージ検索をベンチマークとして,2つの胸部X線および放射線学的報告を用いた可変サイズのトレーニングデータセットを用いて,これらの手法の性能評価を行った。
論文 参考訳(メタデータ) (2023-03-30T18:20:00Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
医用画像セグメンテーションのための階層化グループ理論を用いた半教師付きコントラスト学習フレームワークARCOを提案する。
まず、分散還元推定の概念を用いてARCOを構築することを提案し、特定の分散還元技術が画素/ボクセルレベルのセグメンテーションタスクにおいて特に有用であることを示す。
5つの2D/3D医療データセットと3つのセマンティックセグメンテーションデータセットのラベル設定が異なる8つのベンチマークで、我々のアプローチを実験的に検証する。
論文 参考訳(メタデータ) (2023-02-03T13:50:25Z) - An interpretable machine learning system for colorectal cancer diagnosis from pathology slides [2.7968867060319735]
本研究は,約10,500個のWSIを用いて,最大規模のWSI南極サンプルデータセットを用いて行った。
提案手法は, パッチベースのタイルに対して, 異形成の重症度に基づくクラスを推定する。
病理学者が導入したドメイン知識を活用するために、解釈可能な混合スーパービジョンスキームで訓練されている。
論文 参考訳(メタデータ) (2023-01-06T17:10:32Z) - Dual-Consistency Semi-Supervised Learning with Uncertainty
Quantification for COVID-19 Lesion Segmentation from CT Images [49.1861463923357]
CT画像を用いた半監視型COVID-19病変分割のための不確実性誘導型二重一貫性学習ネットワーク(UDC-Net)を提案する。
提案した UDC-Net は,Dice の完全教師方式を 6.3% 向上させ,他の競合的半監督方式を有意なマージンで上回っている。
論文 参考訳(メタデータ) (2021-04-07T16:23:35Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - Chest x-ray automated triage: a semiologic approach designed for
clinical implementation, exploiting different types of labels through a
combination of four Deep Learning architectures [83.48996461770017]
本研究では,異なる畳み込みアーキテクチャの後期融合に基づく深層学習手法を提案する。
公開胸部x線画像と機関アーカイブを組み合わせたトレーニングデータセットを4つ構築した。
4つの異なるディープラーニングアーキテクチャをトレーニングし、それらのアウトプットとレイトフュージョン戦略を組み合わせることで、統一されたツールを得ました。
論文 参考訳(メタデータ) (2020-12-23T14:38:35Z) - Semi-Supervised Active Learning for COVID-19 Lung Ultrasound
Multi-symptom Classification [13.878896181984262]
本稿では,複雑な特徴をモデル化し,ラベリングコストを削減するため,TSAL法を提案する。
そこで本研究では,多症状多ラベル(MSML)分類ネットワークを提案し,肺症状の識別的特徴について検討した。
678本の動画から6,836枚の画像が採取された71人の臨床患者を含む、COVID19-LUSMSという新しい肺データセットが構築されている。
論文 参考訳(メタデータ) (2020-09-09T10:45:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。