論文の概要: On the Capacity Region of Individual Key Rates in Vector Linear Secure Aggregation
- arxiv url: http://arxiv.org/abs/2601.03241v1
- Date: Tue, 06 Jan 2026 18:34:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-07 17:02:13.060652
- Title: On the Capacity Region of Individual Key Rates in Vector Linear Secure Aggregation
- Title(参考訳): ベクトル線形セキュアアグリゲーションにおける各鍵レートの容量領域について
- Authors: Lei Hu, Sennur Ulukus,
- Abstract要約: すべてのユーザがキーを保持する必要はないことを示し、それによって文学における最もよく知られた到達可能な領域を厳密に拡大する。
以上の結果から,各ユーザがキーを保持する必要はないという新たな事実が明らかになった。
- 参考スコア(独自算出の注目度): 55.126702858312456
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We provide new insights into an open problem recently posed by Yuan-Sun [ISIT 2025], concerning the minimum individual key rate required in the vector linear secure aggregation problem. Consider a distributed system with $K$ users, where each user $k\in [K]$ holds a data stream $W_k$ and an individual key $Z_k$. A server aims to compute a linear function $\mathbf{F}[W_1;\ldots;W_K]$ without learning any information about another linear function $\mathbf{G}[W_1;\ldots;W_K]$, where $[W_1;\ldots;W_K]$ denotes the row stack of $W_1,\ldots,W_K$. The open problem is to determine the minimum required length of $Z_k$, denoted as $R_k$, $k\in [K]$. In this paper, we characterize a new achievable region for the rate tuple $(R_1,\ldots,R_K)$. The region is polyhedral, with vertices characterized by a binary rate assignment $(R_1,\ldots,R_K) = (\mathbf{1}(1 \in \mathcal{I}),\ldots,\mathbf{1}(K\in \mathcal{I}))$, where $\mathcal{I}\subseteq [K]$ satisfies the \textit{rank-increment condition}: $\mathrm{rank}\left(\bigl[\mathbf{F}_{\mathcal{I}};\mathbf{G}_{\mathcal{I}}\bigr]\right) =\mathrm{rank}\bigl(\mathbf{F}_{\mathcal{I}}\bigr)+N$. Here, $\mathbf{F}_\mathcal{I}$ and $\mathbf{G}_\mathcal{I}$ are the submatrices formed by the columns indexed by $\mathcal{I}$. Our results uncover the novel fact that it is not necessary for every user to hold a key, thereby strictly enlarging the best-known achievable region in the literature. Furthermore, we provide a converse analysis to demonstrate its optimality when minimizing the number of users that hold keys.
- Abstract(参考訳): 我々は,最近Yuan-Sun (ISIT 2025) が提起したオープンな問題に対する新たな知見を,ベクトル線形セキュア集約問題において必要となる最小の個別鍵レートについて提示する。
1ユーザ$k\in [K]$がデータストリーム$W_k$と個々のキー$Z_k$を保持する。
サーバは、線形関数 $\mathbf{F}[W_1;\ldots;W_K]$ を他の線形関数 $\mathbf{G}[W_1;\ldots;W_K]$ に関する情報を学習せずに計算することを目的としており、$[W_1;\ldots;W_K]$ は$W_1,\ldots,W_K$ の行スタックを表す。
開問題は、$R_k$, $k\in [K]$ と表される最小必要長さを$Z_k$ と決定することである。
本稿では,タプル率$(R_1,\ldots,R_K)$の新しい達成可能な領域を特徴付ける。
R_1,\ldots,R_K) = (\mathbf{1}(1 \in \mathcal{I}),\ldots,\mathbf{1}(K\in \mathcal{I}))$, where $\mathcal{I}\subseteq [K]$ satisfies the \textit{rank-increment condition}: $\mathrm{rank}\left(\bigl[\mathbf{F}_{\mathcal{I}};\mathbf{G}_{\mathcal{I}}\bigr]\right) =\mathrm{rank}\bigl(\mathbf{F}_{\mathcal{I}}\bigr]\right)$
ここで、$\mathbf{F}_\mathcal{I}$ と $\mathbf{G}_\mathcal{I}$ は $\mathcal{I}$ でインデックスされた列によって形成される部分行列である。
以上の結果から,各ユーザがキーを保持する必要はないという新たな事実が明らかになった。
さらに、キーを保持するユーザ数を最小化する際に、その最適性を示すために、逆解析を提供する。
関連論文リスト
- The Communication Complexity of Approximating Matrix Rank [50.6867896228563]
この問題は通信複雑性のランダム化を$Omega(frac1kcdot n2log|mathbbF|)$とする。
アプリケーションとして、$k$パスを持つ任意のストリーミングアルゴリズムに対して、$Omega(frac1kcdot n2log|mathbbF|)$スペースローバウンドを得る。
論文 参考訳(メタデータ) (2024-10-26T06:21:42Z) - In-depth Analysis of Low-rank Matrix Factorisation in a Federated Setting [21.002519159190538]
我々は分散アルゴリズムを解析し、$N$クライアント上で低ランク行列の分解を計算する。
グローバルな$mathbfV$ in $mathbbRd times r$をすべてのクライアントに共通とし、ローカルな$mathbfUi$ in $mathbbRn_itimes r$を得る。
論文 参考訳(メタデータ) (2024-09-13T12:28:42Z) - Sample-Efficient Linear Regression with Self-Selection Bias [7.605563562103568]
未知のインデックス設定における自己選択バイアスを伴う線形回帰の問題を考察する。
我々は,$mathbfw_1,ldots,mathbfw_kinを復元する,新しい,ほぼ最適なサンプル効率($k$)アルゴリズムを提案する。
このアルゴリズムは雑音の仮定をかなり緩めることに成功し、従って関連する最大線形回帰の設定にも成功している。
論文 参考訳(メタデータ) (2024-02-22T02:20:24Z) - Provably learning a multi-head attention layer [55.2904547651831]
マルチヘッドアテンション層は、従来のフィードフォワードモデルとは分離したトランスフォーマーアーキテクチャの重要な構成要素の1つである。
本研究では,ランダムな例から多面的注意層を実証的に学習する研究を開始する。
最悪の場合、$m$に対する指数的依存は避けられないことを示す。
論文 参考訳(メタデータ) (2024-02-06T15:39:09Z) - SQ Lower Bounds for Learning Mixtures of Linear Classifiers [43.63696593768504]
この問題に対する既知のアルゴリズムは、一様混合の特別な場合であっても、本質的には最善であることを示す。
重要な技術的要素は、独立した関心を持つかもしれない球面設計の新たな構築である。
論文 参考訳(メタデータ) (2023-10-18T10:56:57Z) - Optimal Estimator for Linear Regression with Shuffled Labels [17.99906229036223]
本稿では,シャッフルラベルを用いた線形回帰の課題について考察する。
mathbb Rntimes m の $mathbf Y、mathbb Rntimes p の mathbf Pi、mathbb Rptimes m$ の mathbf B、mathbb Rntimes m$ の $mathbf Win mathbb Rntimes m$ である。
論文 参考訳(メタデータ) (2023-10-02T16:44:47Z) - Fast $(1+\varepsilon)$-Approximation Algorithms for Binary Matrix
Factorization [54.29685789885059]
本稿では, 2次行列分解(BMF)問題に対する効率的な$(1+varepsilon)$-approximationアルゴリズムを提案する。
目標は、低ランク因子の積として$mathbfA$を近似することである。
我々の手法はBMF問題の他の一般的な変種に一般化する。
論文 参考訳(メタデータ) (2023-06-02T18:55:27Z) - Linear Bandits on Uniformly Convex Sets [88.3673525964507]
線形バンディットアルゴリズムはコンパクト凸作用集合上の $tildemathcalo(nsqrtt)$ pseudo-regret 境界を与える。
2種類の構造的仮定は、より良い擬似回帰境界をもたらす。
論文 参考訳(メタデータ) (2021-03-10T07:33:03Z) - The Average-Case Time Complexity of Certifying the Restricted Isometry
Property [66.65353643599899]
圧縮センシングにおいて、100万倍のN$センシング行列上の制限等尺性(RIP)はスパースベクトルの効率的な再構成を保証する。
Mtimes N$ matrices with i.d.$mathcalN(0,1/M)$ entry。
論文 参考訳(メタデータ) (2020-05-22T16:55:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。