論文の概要: SpatiaLoc: Leveraging Multi-Level Spatial Enhanced Descriptors for Cross-Modal Localization
- arxiv url: http://arxiv.org/abs/2601.03579v1
- Date: Wed, 07 Jan 2026 04:50:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-09 02:15:23.267352
- Title: SpatiaLoc: Leveraging Multi-Level Spatial Enhanced Descriptors for Cross-Modal Localization
- Title(参考訳): SpatiaLoc: クロスモーダルローカライゼーションのためのマルチレベル空間拡張記述子を活用する
- Authors: Tianyi Shang, Pengjie Xu, Zhaojun Deng, Zhenyu Li, Zhicong Chen, Lijun Wu,
- Abstract要約: テキストとポイントクラウドを使用したクロスモーダルなローカライゼーションにより、ロボットは自然言語記述を通じて自分自身をローカライズすることができる。
SpatiaLocは、空間的関係をインスタンスレベルとグローバルレベルの両方で強調するフレームワークである。
KITTI360Poseの実験により、SpatiaLocは既存の最先端(SOTA)法よりも大幅に優れていることが示された。
- 参考スコア(独自算出の注目度): 14.55605595737025
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cross-modal localization using text and point clouds enables robots to localize themselves via natural language descriptions, with applications in autonomous navigation and interaction between humans and robots. In this task, objects often recur across text and point clouds, making spatial relationships the most discriminative cues for localization. Given this characteristic, we present SpatiaLoc, a framework utilizing a coarse-to-fine strategy that emphasizes spatial relationships at both the instance and global levels. In the coarse stage, we introduce a Bezier Enhanced Object Spatial Encoder (BEOSE) that models spatial relationships at the instance level using quadratic Bezier curves. Additionally, a Frequency Aware Encoder (FAE) generates spatial representations in the frequency domain at the global level. In the fine stage, an Uncertainty Aware Gaussian Fine Localizer (UGFL) regresses 2D positions by modeling predictions as Gaussian distributions with a loss function aware of uncertainty. Extensive experiments on KITTI360Pose demonstrate that SpatiaLoc significantly outperforms existing state-of-the-art (SOTA) methods.
- Abstract(参考訳): テキストとポイントクラウドを使用したクロスモーダルなローカライゼーションにより、ロボットは、自律的なナビゲーションや人間とロボット間のインタラクションに応用して、自然言語記述を通じて自分自身をローカライズすることができる。
このタスクでは、オブジェクトはテキストと点雲をまたいで再帰し、空間的関係をローカライゼーションの最も差別的な手がかりにする。
このような特徴から,大域的・大域的な空間的関係を重視した粗大な戦略を利用したフレームワークであるSpatiaLocを提案する。
粗い段階では、2次ベジエ曲線を用いて、インスタンスレベルで空間関係をモデル化するBezier Enhanced Object Space Encoder (BEOSE)を導入する。
さらに、周波数認識エンコーダ(FAE)は、大域レベルで周波数領域内の空間表現を生成する。
微細な段階では、不確かさを意識した損失関数を持つガウス分布として予測をモデル化することにより、不確かさを意識したガウス微局所化器(UGFL)が2次元位置を回帰する。
KITTI360Poseに関する大規模な実験により、SpatiaLocは既存の最先端(SOTA)法よりも大幅に優れていることが示された。
関連論文リスト
- UAGLNet: Uncertainty-Aggregated Global-Local Fusion Network with Cooperative CNN-Transformer for Building Extraction [83.48950950780554]
リモートセンシング画像からの抽出は、複雑な構造変化のために難しい課題である。
既存の方法は、セグメンテーションモデルにおけるマルチスケール特徴をキャプチャするために、畳み込みブロックまたは自己アテンションブロックを使用する。
高品質なグローバルローカルなビジュアルセマンティクスを活用するために,不確実性集約型グローバルローカルフュージョンネットワーク(UAGLNet)を提案する。
論文 参考訳(メタデータ) (2025-12-15T02:59:16Z) - Generative MIMO Beam Map Construction for Location Recovery and Beam Tracking [67.65578956523403]
本稿では,スパースチャネル状態情報(CSI)から位置ラベルを直接復元する生成フレームワークを提案する。
生のCSIを直接格納する代わりに、小型の低次元無線地図の埋め込みを学び、生成モデルを利用して高次元CSIを再構築する。
数値実験により,NLOSシナリオにおける局所化精度が30%以上向上し,20%のキャパシティゲインが得られることが示された。
論文 参考訳(メタデータ) (2025-11-21T07:25:49Z) - SpatialActor: Exploring Disentangled Spatial Representations for Robust Robotic Manipulation [63.48859753472547]
SpaceActorは、意味論と幾何学を明確に分離する堅牢なロボット操作のためのフレームワークである。
RLBenchの87.4%で最先端のパフォーマンスを達成し、ノイズの異なる条件下では13.9%から19.4%改善している。
論文 参考訳(メタデータ) (2025-11-12T18:59:08Z) - Scaling Up Occupancy-centric Driving Scene Generation: Dataset and Method [54.461213497603154]
作業中心の手法は、最近、フレームとモダリティをまたいだ一貫した条件付けを提供することで、最先端の結果を得た。
Nuplan-Occは、広く使われているNuplanベンチマークから構築された、これまでで最大の占有率データセットである。
高品質な占有、多視点ビデオ、LiDAR点雲を共同で合成する統合フレームワークを開発した。
論文 参考訳(メタデータ) (2025-10-27T03:52:45Z) - Seeing the Unseen: Mask-Driven Positional Encoding and Strip-Convolution Context Modeling for Cross-View Object Geo-Localization [8.559240391514063]
クロスビューオブジェクトジオローカライゼーションは、クロスビューマッチングによる高精度オブジェクトローカライゼーションを可能にする。
既存の手法はキーポイントに基づく位置符号化に依存しており、オブジェクトの形状情報を無視しながら2次元座標のみをキャプチャする。
空間座標と物体シルエットの両方を捕捉するために分割マスクを利用するマスクベースの位置符号化方式を提案する。
EDGeoは、堅牢なクロスビューオブジェクトジオローカライズのためのエンドツーエンドフレームワークである。
論文 参考訳(メタデータ) (2025-10-23T06:07:07Z) - Topology-Aware Modeling for Unsupervised Simulation-to-Reality Point Cloud Recognition [63.55828203989405]
我々はオブジェクトポイントクラウド上でSim2Real UDAのための新しいTopology-Aware Modeling (TAM)フレームワークを紹介する。
提案手法は,低レベルの高周波3次元構造を特徴とするグローバル空間トポロジを利用して,領域間隙を緩和する。
本稿では,クロスドメイン・コントラスト学習と自己学習を組み合わせた高度な自己学習戦略を提案する。
論文 参考訳(メタデータ) (2025-06-26T11:53:59Z) - VRS-UIE: Value-Driven Reordering Scanning for Underwater Image Enhancement [104.78586859995333]
状態空間モデル(SSM)は、線形複雑性と大域的受容場のために、視覚タスクの有望なバックボーンとして登場した。
大型で均質だが無意味な海洋背景の優位性は、希少で価値ある標的の特徴表現応答を希薄にすることができる。
水中画像強調(UIE)のための新しい値駆動リダクションスキャンフレームワークを提案する。
本フレームワークは, 水バイアスを効果的に抑制し, 構造や色彩の忠実さを保ち, 優れた向上性能(WMambaを平均0.89dB超える)を実現する。
論文 参考訳(メタデータ) (2025-05-02T12:21:44Z) - Frequency-Spatial Entanglement Learning for Camouflaged Object Detection [34.426297468968485]
既存の手法では、複雑な設計で空間的特徴の識別能力を最大化することにより、画素類似性の影響を減らそうとしている。
本稿では,周波数領域と空間領域の表現を共同で探索し,周波数空間の絡み合い学習(FSEL)手法を提案する。
我々の実験は、広く使われている3つのデータセットにおける包括的量的および質的比較を通じて、21以上の最先端手法によるFSELの優位性を実証した。
論文 参考訳(メタデータ) (2024-09-03T07:58:47Z) - Weakly Supervised Object Localization via Transformer with Implicit
Spatial Calibration [20.322494442959762]
Wakly Supervised Object Localization (WSOL) は、実際のアプリケーションでアノテーションのコストが低いため、多くの注目を集めている。
パッチトークンとそれらの空間関係のセマンティックな類似性を統合拡散モデルに組み込んだ,正確なWSOLのためのシンプルで効果的な空間モジュール(SCM)を提案する。
SCMはTransformerの外部モジュールとして設計されており、推論中に除去して計算コストを削減することができる。
論文 参考訳(メタデータ) (2022-07-21T12:37:15Z) - SphereVLAD++: Attention-based and Signal-enhanced Viewpoint Invariant
Descriptor [6.326554177747699]
SphereVLAD++ は注目度が高められた視点不変位置認識手法である。
SphereVLAD++は、小さな視点や完全に逆の視点差の下で、最先端の3D位置認識手法をすべて上回ることを示す。
論文 参考訳(メタデータ) (2022-07-06T20:32:43Z) - Multi-Scale Representation Learning for Spatial Feature Distributions
using Grid Cells [11.071527762096053]
本研究では,位置の絶対位置と空間的関係を符号化するスペース2Vecという表現学習モデルを提案する。
その結果、Space2Vecはマルチスケール表現のため、確立されたMLアプローチよりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-02-16T04:22:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。